
www.manaraa.com

www.manaraa.com

Apriori Algorithm for Arabic Data

Using MapReduce

Submitted By:

Ola Abed El-nasser El-khoudary

Supervised By:

Dr. Rebhi Baraka

A Thesis Submitted in Partial Fulfillment of the Requirements for the

Degree of Master in Information Technology

July, 2015 – Shawal , 1436H

The Islamic University – Gaza

Denary of Higher Studies

Faculty of Information Technology

غزة –لجامعة الاسلامية ا

اــــــــــــات العليــــادة الدراســــعم

اتــــا المعلومــــة تكنولوجيــــكلي

www.manaraa.com

www.manaraa.com

I

Abstract

Aprioi is the most popular algorithm that is used to extract frequent

itemsets from large data sets where these frequent itemsets can be used to

generate association rules. Such rules are used as a basis for discovering

knowledge such as detecting unknown relationships and producing results

which can be used for decision making and prediction.

When the data size is very large, both memory use and computational

cost are very expensive. And in this case single processor’s memory and CPU

resources are very limited which make the algorithm performance inefficient.

Parallel and distributed computing is effective for improving algorithm

performance.

In our research we propose a parallel Apriori approach for large volume

of Arabic text document using MapReduce with enhanced speedup and

performance, Apriori algorithm that has been popular to collect the itemsets

frequently occurred in order to compose Association Rule, MapReduce is a

scalable data processing tool that enables to process a massive volume of data

in parallel.

The experiments show that the parallel Apriori approach can process

large volume of Arabic text efficiently on a MapReduce with 16 computers,

which can significantly improve the execution time and speedup and also

generate strong association rules.

Keywords: Apriori, frequent itemset, Association Rule, MapReduce and

Hadoop.

www.manaraa.com

II

 الملخص

واستخدامها في النص العربي باستخدام نموذج Aprioriخوارزمية عنوان البحث:

MapReduce

من اشهر الخوارزميات التي تستخدم لاستخراج مجموعة من البنود Aprioriتعتبر خوارزمية

 (Association rules)حصول على قواعد (هذه البنود تستخدم للfrequent itsemsetsالمتكررة)

لاكتشاف المعرفة. هذه القواعد تساعدنا في التنبؤ بالعلاقات غير المعروفة والحصول على النتائج التي

 تساعد في التنبؤ واتخاذ القرار.

مكلفة ليدية للمعالجات التقبات عندما يكون حجم البيانات كبير فيعتبر استخدام كل من الذاكرة والحسا

جدا بالإضافة الى ذلك فان ذاكرة المعالج الواحد ومصادره محدودة جدا وهذا يؤدي ضعف في اداء

 الخوارزمية. لذلك تعتبر الحوسبة المتوازية والموزعة فعالة جدا في تحسين اداء الخوارزمية.

 MapReduceموذج الحوسبة المتوازية باستخدام ن Aprioriفي هذا البحث قمنا باقتراح خوارزمية

الاكثر شهرة Aprioriخوارزمية ,(performanceوالأداء) (speedup)مع تعزيز التسريع

تكوين قواعد وتستخدم هذه البنود من اجلالتي تظهر تكرارا (itemsets)تستخدم في جمع البنود

(Association rules) يعتبر نموذج الحوسبة المتوازية ,(MapReduce) اداة لمعالجة البيانات

 حيث تستطيع معالجة كم ضخم من البيانات بالطريقة المتوازية.

المتوازية المقترحة تعالج بكفاءة النصوص العربية Aprioriاظهرت النتائج ان تطبيق خوارزمية

جهاز حاسوب 61مكون من MapReduceذات الحجم الكبير حيث اجريت التجارب على نموذج

 ت النتائج تحسنا كبيرا على التسريع والاداء وايضا الحصول على قواعد قوية.واظهر

www.manaraa.com

III

Dedication

To my beloved mother and father…

To my husband and children Lilia and Naya…

To my sisters and brothers…

To my best friends…

www.manaraa.com

IV

Acknowledgments

Thanks to Allah for giving me the power and ability to complete this thesis.

Many thanks and sincere gratefulness goes to my supervisor Eng. Dr. Rebhi

S. Baraka without his help, guidanc and continuous follow-up, this research

would never have been.

Also I would like to extend my thanks to the academic staff of the Faculty of

Information Technology at the Islamic University-Gaza who helped me

during my Master's study and taught me different courses.

Last but not least, I am greatly indebted to my family for their love and

support.

www.manaraa.com

V

Table Of Contents

Abstract ……………………………………………………………………I

 II…………………………………………………………………… الملخص

Dedication ……………………………………………………………...…III

Acknowledgments ……………………………………………………..…IV

Abstract ……………………………………………………………………V

Table of Contents……………………………………………………….…II

List of Figures….…………………………………………………………VI

List of Algorithms……………………………………………………...…IX

List of Tables…..…………………………………………………….…….X

List of Abbreviations……………………………………………..….……XI

Chapter 1 Introduction .. 1

 Statement of the Problem ... 3

 Objectives ... 3

1.2.1 Main objectives ... 3

1.2.2 Specific objectives .. 4

 Scope and limitations ... 4

 Importance of the Thesis .. 5

 Methodology .. 5

 Research Format ... 7

2Chapter 2 Related work ... 8

www.manaraa.com

VI

 Apriori Algorithm for Association Mining .. 8

 MapReduce Based Parallel Algorithms for Large Data Processing 12

 Summary .. 15

3Chapter 3 Theoretical Foundation .. 16

 Association Rules Mining .. 16

 Apriori Algorithm .. 18

3.2.1 Performance Metrics for the parallel Apriori 19

 Arabic Text Preprocessing: .. 20

 MapReduce Programing Model ... 22

 Hadoop as MapReduce Realization ... 26

 Summary .. 31

Chapter 4 The Proposed Parallel Apriori Algorithm 32

 The Overall Apriori Approach ... 32

 Corpus Collection ... 35

 The parallel Apriori Algorithm as a MapReduce Model 36

4.3.1 Text Preprocessing Phase ... 37

4.3.2 Phase One: Generate Frequent Itemsets for Each Split 40

4.3.3 Phase Two: Generate Frequent Itemsets for The all Splits 41

4.3.4 Phase Three: Generate Association Rules 43

 Summary .. 44

5Chapter 5 Experimental Results and Evaluation .. 45

 The Corpus ... 45

www.manaraa.com

VII

 Experimental Setup .. 46

 Implementing the Parallel Apriori over Hadoop. 47

 Experimental Results and Evaluation .. 48

5.4.1 Execution Time ... 49

5.4.2 Speedup ... 51

5.4.3 Support and Confidence ... 53

 Summary .. 56

6Chapter 6 Conclusion and Future Work ... 57

7References…………………………………………......…………….…...5 9

www.manaraa.com

VIII

1 List of Figures

Figure 1.1:The Research Methodology……………………….…................6

Figure 3.1: Pseudo Code for Apriori Algorithm ..…………….…………..18

Figure 3.2: MapReduce Execution overview ……………………….……24

Figure 3.3: The Component of the Hadoop Cluster……….…………..….27

Figure 3.4: Hadoop Distributed File System Architecture……………….30

Figure 4.1: Workflow of the Proposed Approach………………………..34

Figure 4.2: Proposed Parallel Apriori Approach…………………..….….31

Figure 4.3 : Text Preprocessing Details……………………………….….37

Figure 5.1: The Result of Running Parallel Apriori…………………..….48

Figure 5.2 : Execution Time…………………………………………...…50

Figure 5.3 :The Relative Speedup of the Proposed Parallel Apriori……..53

www.manaraa.com

IX

List of Algorithms

Algorithm 4.1: The Map Phase of Text Preprocessing…………………..38

Algorithm 4.2: The Reduce Phase of Text Preprocessing…………….….39

Algorithm 4.3: The Mapper of Phase 1……….………………………….40

Algorithm 4.4: The Reducer of Phase 1………………………………….41

Algorithm 4.5: The Mapper of Phase 2 ………………………………….42

Algorithm 4.6: The Reducer of Phase 2 ………………………………….42

Algorithm 4.7: Map and Reduce for Generate Association Rules ……….43

www.manaraa.com

X

List of Tables

Table 5.1 : The Shamel Corpus .. 46

Table 5.2: The Execution Times (sec.) of One Node and Multiple Node 49

Table 5.3 : The Relative Speedup of the Proposed Parallel Aprioi 51

Table 5.4 Minimum Support Threshold with Execution Time 54

Table 5.5 : The number of Rules Generated for Different Support and

Confidence .. 55

Table 0.6: Example of the Rules…………………...………………………55

www.manaraa.com

XI

List of Abbreviations

AFS Apriori for Frequent Sub path

ARM Association Rule Mining

CA Classical Arabic

DA Dialectal Arabic

FP Frequent Pattern

HDFS Hadoop Distributed File System

KNN K-Nearest Neighbors

LHS Left Hand Side

MPI Message Passing Interface

OSAC Open Source Arabic Corpus

RHS Right Hand Side

www.manaraa.com

A1

Chapter 1 Introduction

Text mining has introduced tools and techniques to extract interesting

patterns from large data. Apriori algorithm is the most classical and important

algorithm for mining frequent itemsets. Frequent patterns, are patterns that

frequently appear in a data collection. Itemsets, subsequences, or

substructures are different terms used to refer to patterns of different kinds.

Text mining concerns looking for patterns in unstructured text. The

purpose of Text mining is to process unstructured (textual) information,

extract meaningful numeric indices from the text and make the information

contained in the text accessible to the various data mining algorithms.

Information can be extracted to derive summaries for the words contained in

the documents or to compute summaries for the documents based on the words

contained in them [1].

Finding frequent itemsets is one of the most important fields of data

mining. Apriori algorithm is the most established algorithm for finding

frequent itemsets from dataset; however, it needs to scan the dataset many

times and to generate many candidate itemsets [2]. Association Mining is one

of the most important data mining’s functionalities and is the most popular

technique that has been studied by researchers [3]. Mining of frequent

itemsets is an important phase in association mining which discovers frequent

itemsets in data sets.

MapReduce is a scalable programming model. The programmer writes

two functions a map function and a reduce function each of the functions

www.manaraa.com

2

define a mapping from one set of key-value pairs to another [4]. The map

function takes an input as key/value and produces a set of intermediate

key/values. It groups all the intermediate values associated with same key and

passes them to the reduce function. The reduce function takes an intermediate

key and a set of values for the key and merges all values together to form

smaller set of values [5].

One widely used implementation of MapReduce is Apache Hadoop [6]

which is a collection of related services that compose an infrastructure for

distributed computing. Hadoop is known for MapReduce and its Hadoop

Distributed File System HDFS [7], it provides complementary services, such

as Core, MapReduce, HDFS, and HBase. Hadoop MapReduce is distributed

data processing model and execution environment that runs on large clusters

of commodity machines.

One of the most important advantages of MapReduce is that it provides

an abstraction that hides many system-level details from the programmer.

Therefore, the developer can focus on what computations need to be

performed as opposed to how those computations are actually carried out or

how to get the data to the processes that depend on them [8]. MapReduce

provides a means to distribute computation without burdening the

programmer with the details of distributed computing [9]. Because of the

benefits of MapReduce model we use it as parallel programming model.

The majority of the research works conducted on generating frequent

itemsets is mainly related to English corpuses and little works have focused

on Arabic data. Thus, this work investigate the problem of generating frequent

itemsets from Arabic data using Apriori algorithm. We prefer Apriori

www.manaraa.com

3

algorithm over other algorithms as it’s the simplest and we have recently a

good work on parallel Apriori algorithm so we can overcome the drawbacks.

We build a MapReduce-based parallel Apriori approach for large scale

of Arabic text to generate frequent itemsets and used this itemsetse to generate

association rules and also increase the algorithm performance by

implementing the algorithm in parallel.

To build our approach, we collect a large volume of Arabic corpus and

perform several preprocessing steps to prepare the corpus for applying

Apriori. After that we design the parallel Apriori. We conduct several

experiments to apply the parallel Aprior approach.

 Statement of the Problem

Apriori algorithm for the generation of frequent itemsets in text mining,

although simple, suffers from performance bottleneck when used with large

data sets. There have been several attempts to improve its performance

through parallelization, but none of these attempts have considered the

attractive MapReduce programming model and Arabic data sets.

Therefore there is a need to develop a high performance Apriori approach over

MapReduce programming model to process large Arabic data and generate

frequent itemsets which can be used for generating association rules.

 Objectives

1.2.1 Main objectives

www.manaraa.com

4

The main objective of this research is to develop an efficient parallel

Apriori approach over MapReduce to generate frequent itemsets and use these

frequent itemsets for generating association rules from Arabic data.

1.2.2 Specific objectives

 Designing the suitable MapReduce computing model for parallel

Apriori.

 Determining and collecting an Arabic corpus which is suitable for

Apriori algorithm.

 Implementing the algorithm based on the designed model.

 Executing and testing the algorithm using the collected Arabic corpus.

 Evaluating the performance of the algorithm based on time, speedup.

 Scope and limitations

The work is conducted with the following limitations and assumptions:

1- We use Apache Hadoop framework to build the clusters.

2- Experiments are conducted on a set of processors and their own

exclusive memory (multicomputer cluster).

3- Some text preprocessing is performed using RapidMiner.

4- The MapReduce text preprocessing execution time is not considered.

5- We use 2, 4, 8, 12 and 16 processors to conduct the experiments and to

measure the effects on the speedup and the execution time of proposed

approach.

6- The strength of association rules is based on the minimum support and

confidence threshold which is specify during the experiments.

www.manaraa.com

5

 Importance of the Thesis

1- Improve the efficiency of Apriori algorithm using MapReduce in terms

of time, resources, and cost.

2- Generate association rules from Arabic data that can be used for

detecting unknown relationships which can be used for decision

making and prediction.

3- Improve the Apriori algorithm to naturally fit with the MapReduce

programming model to benefit from the high scalability of MapReduce

applications for Arabic data which is not exist.

4- Overcome the issue low performance for the sequential Apriori

algorithm due to the large amount of computational power.

 Methodology

The methodology to be followed in order to complete this research and

achieve its objectives is illustrated in Figure 1.1 and consists of the following

phases:

 Research and Survey: this includes reviewing the recent literature

closely related to the thesis problem statement. After analyzing the

existing methods, identifying the drawbacks or the lack of existing

approaches, we formulate the solution to overcome the drawbacks.

www.manaraa.com

6

 Data Collection: we collect largest freely public Arabic corpus of text

documents with multiple domains.

 Text Preprocessing: some preprocessing in Arabic corpus is

performed. It includes applying stop words removal, tokenizing string

to words and applying suitable term stemming.

 Design the Parallel Apriori Approach: we build the parallel Apriori

algorithm for large volume Arabic text based on MapReduce model.

 Implementation of the algorithm: we implement the proposed

approach using Java programming language, and Hadoop platform with

Figure 1.1 : Stages of the Research Methodology

www.manaraa.com

7

a multicomputer cluster on the largest freely public Arabic corpus of

text documents.

 Evaluation: the proposed approach is evaluated for speedup and

execution time using different performance metrics.

 Results and Discussion: In this stage we analyze the obtained results

and justify the effectiveness of the proposed approach.

 Research Format

 The thesis is organized as follows: Chapter 2 presents and discusses the state

of the art and related works. In Chapter 3 includes the theoretical foundation

of the research. Chapter 4 presents the proposed parallel Apriori approach.

Chapter 5 presents the experimental results and evaluation. Finally, Chapter 6

presents the conclusions and future work.

www.manaraa.com

8

2 Chapter 2 Related work

In this chapter, we give an overview to approaches related to the main

topic of this thesis. The first section presents the Apriori algorithm for

association mining and the works conducted in improving the performance of

the Apriori in sequential and in parallel using MPI, the second section includes

the MapReduce as a parallel programming model which is used for data

processing across massive data sets. It also discuss the hadoop as a

programming framework that support processing of large data.

 Apriori Algorithm for Association Mining

Association mining is one of the most important data mining’s

functionalities and it is the most popular technique. Aprioi algorithm which

used for finding frequent item set and use this item to generate association

rules. The benefits of these rules are detecting unknown relationships,

producing results which can be used for decision making and prediction.

There are numerous of researches and projects that exploit Apriori algorithm

and how to improve its efficiency.

Zoghby [10]This work introduces a new system developed to discover

soft-matching association rules using a similarity measurements based on the

derivation feature of the Arabic language. In addition, it presents the features

of using Frequent Closed Item-sets (FCI) concept in mining the association

rules rather than Frequent Itemsets (FI).

Najadat and Maolegi et al. [11] indicate the limitations of the original

Apriori algorithm of wasting time for scanning the whole database searching

www.manaraa.com

9

on the frequent itemsets, and presents an improvement on Apriori by wasted

time depending on scanning only some transactions. They showed by

experimental results that applied on the original Apriori and the improved

Apriori that the new Apriori reduces the time consumed by 67.38% in

comparison with the original Apriori, and makes the Apriori algorithm more

efficient and less time consuming.

The results show that the improved Apriori algorithm that scan only

some transactions instead of the whole database reduce the consumed time.

Rao and Gupta. [12] present a new scheme for finding the rules out of

transactional datasets which improve the original Apriori in terms number of

database scans, memory consumption, and the interestingness of the rules. It

also avoids scanning the database again and again. So, they use Frequent

Pattern (FP) Growth ARM (Association rule mining) algorithm that is more

efficient to mine patterns when database grows.

Ali [8] propose a method for finding frequent patterns using AFS

(Apriori for Frequent Sub path) and use this method to extract frequent

patterns from Quran. using a graph, and apply a frequent sub-path mining

algorithm on it to generate frequent patterns. The basic idea is to represent

Quranic text using a complete graph, and apply an efficient frequent pattern

mining algorithm which can take advantage of the graph representation.

The previous work using Arabic data (Quran) to generate frequent pattern, the

algorithm showed that frequent patterns generated by the algorithm cluster

similar or identical verses.

www.manaraa.com

10

Urmila. [13] presents features of parallel algorithm for mining

association rules using MPI for message passing based on the Master-Slave

based structural model to achieve high-performance parallel computing, the

algorithm is implemented using Master-Slave structure and communicate by

MPI between the hosts, this make full use of the resources, a unified

scheduling, coordination of treatment, under the cluster environment.

The previous work showed that is parallelization is the most suitable

solution to efficient data mining.

Lal and Mahanti.[14] propose an algorithm to mine data from cloud

using sector/sphere framework, Sector/Sphere is an open source software

suite for high-performance distributed data storage and processing, Sector is

a distributed file system targeting data storage over a large number of

commodity computers. Sphere is the programming framework that supports

massive in-storage parallel data processing for data stored in Sector. The

algorithm can avoid redundant rules, the performance of the algorithm

improved when compared with the existing algorithms.

Liu and Liu. [2] build a knowledge system established based on the

analysis of classical Apriori. The improved algorithm adopted the matrix to

express the database it scans the database once and eliminate a huge number

of linking operations in finding frequent item sets. The experimental results

showed that the new algorithm is improved both the efficiency and the

performance.

 Bayardo and Roberto [15] propose the Max-Miner algorithm for extracting

the maximal of frequent itemset .the previous algorithms based on Apriori

scale exponentially with longest pattern length. The idea is to expand sets over

www.manaraa.com

11

an ordered and finite item domain where four items are denoted by their

position. The particular ordering imposed on the item domain affects the

parent child relationships in the set-enumeration tree but not its completeness

experiments on real data showed that when the patterns are long, the new

algorithm is more efficient.

Zoghby et al. [10] presents a system that uses new similarity measures

and a modified association rule generation to discover soft-matching rules

from Arabic textual databases automatically constructed from document

corpora. The system induces accurate predictive rules. The excellence of the

soft- matching over the hard exact matching is clear in the system results.

They use the algorithm called CHARM. It only prunes closed itemset lattice

rather than all itemsets lattice. CHARM can reduce both the number of

database passes and CPU overhead incurred by the frequent itemset search as

well as the efficiency and effectiveness of the rules.

The works presented above shows the importance of Apriori algorithm

and the same time shows its main limitation, namely, the slowness of the

sequential version of the algorithm which we try to overcome.

Urmila [13] implement Apriori using MPI they showed that parallelization is

the most suitable solution to increase the performance of Apriori algorithm.

In my work I used MapReduce over MPI.

Ali using AFS (Apriori for Frequent Sub path) to extract frequent patterns

from Quran. using graph but the implementation is in sequential not parallel.

In my thesis I used Arabic text but in parallel. Also (Zoghby) present the

CHARM algorithm to produce soft-matching rules from Arabic textual

databases also the implementation in serial nor parallel.

www.manaraa.com

12

 MapReduce Based Parallel Algorithms for Large

Data Processing

MapReduce is a programming model and an associated implementation

for processing large data sets. User specify a map function that processes a

key/value pair to generate a set of intermediate key/value pairs, and a reduce

function that merges all intermediate values associated with the same

intermediate key.

Woo. [16] presents Apriori algorithm that runs on paralle MapReduce

framework namely Apache Hadoop over a cluster of computers. The author

also explains the time complexity which theoretically shows that the

algorithm have higher performance than the sequential algorithm. The item

sets produced by the algorithm can be used to compute and produce

association rules for market analysis. But the algorithm needs to be built and

generate experimental result to prove that the proposed algorithm works.

Mahendra and Deepika [17] discusses an algorithm to mine the data from

the cloud using sector/sphere framework with association rules they also

discussed the integration of Sector/Sphere framework and Association rule.

This enables the application of association rule algorithm to the wide range of

cloud services available on the web. Sphere allow developers to write certain

distributed data parallel applications with several simple APIs. A Sphere

database consists of one or more physical files. Computation in sphere is done

by user-define function. the result can be written to either the local disk or

common destination files on other nodes.

www.manaraa.com

13

Hegazy. [18]implements an efficient MapReduce Apriori algorithm

based on Hadoop-MapReduce model which needs only two phase to find all

frequent itemsets, they also compared the new algorithm with two existed

algorithms which need either one or k phases to find the same frequent

itemsets. Experimental results showed that the proposed Apriori algorithm is

efficient and exceed the other two algorithms.

Qureshi and Bansal [19] used association rule mining as a data mining

technique they have improved the Apriori algorithm to suit it for parallel

computation platform. Using Amazon’s web services namely EC2, S3 and

EMR for cloud computing, The proposed algorithm will reduce the execution

time for lower values of support count, the authors didn’t mention or explain

the algorithm also the result wasn’t clear .

Dean and Ghemwat. [5] implement a MapReduce system that runs on a

large cluster of commodity machines and is highly scalable. The author added

some optimizations in the implemented system that aims to reduce the amount

of data sent across the network. The system gives us a simple and powerful

interface that enables automatic parallelization and distribution of large-scale

computations, combined with an implementation of this interface that

achieves high performance on large clusters of commodity PCs.

HaLee and Choi. [20] aim to assist the database and open source

communities in understanding various technical aspects of the MapReduce

framework. They discuss MapReduce framework pros and cons. Also they

introduce its optimization strategies and discuss challenges raised on parallel

data analysis with MapReduce. They found that MapReduce is simple but

provides good scalability and fault-tolerance for massive data processing.

www.manaraa.com

14

Yang and Dasdan [21] aim to improve the MapReduce framework by

adding a Merge phase, so that it is more efficient and easier to process data

relationships among heterogeneous datasets. Also they extend the MapReduce

framework to the Map-Reduce-Merge framework. It also adds a new Merge

phase that can join reduced outputs. They found that Map-Reduce-Merge

model added to MapReduce’s many features. I also contains several

configurable components that enable many data-processing patterns

Agrawal and Srikant. [22] design and implement a MapReduce simulator

to simulate the behavior of algorithms based on discrete event simulation

which accurately simulate the hadoop environment. The simulation allows us

to measure scalability of MapReduce application. The evaluation results

show high level of accuracy from different aspect.

AbuTair and Baraka. [1]propose a parallel learning algorithm based on

the KNN algorithm. They evaluated the parallel implementation on a

multicomputer cluster that contains of 14 computers, using C++ programming

language and the MPI library. They used OSAC Arabic corpus collected from

multiple websites, the corpus includes 22,428 text documents with different

categories (History, Sports, Health, Low, Stories, Economics, Education,

Cooking Recipes). The corpus contains 18,183,511 words.

AbuShab and Baraka. [23] propose a MapReduce-based classification

approach for large scale Arabic text based on Naïve Bayes Algorithm that

reduces time and achieves enhanced accuracy. Also the algorithm can process

large amount of Arabic text efficiently and significantly improve the speedup,

and the classification results show that the proposed parallel classifier has

achieved accuracy, precision, and F-measure with around 97%.

www.manaraa.com

15

From the previous work on MapReduce the results show that using

MapReduce as a parallel programming model improve the performance of the

algorithm.

 Summary

 In this chapter, we presented a review of existing works closely related to

our research and identified some drawbacks of existing approaches. From the

previous works there is a needed work to enhance the performance of Apriori

by implementing it in parallel using MapReduce, but there is limited work in

Arabic data.

In the next chapter, we present the theoretical foundation underlying our

research.

www.manaraa.com

16

3 Chapter 3 Theoretical Foundation

In this chapter, the fundamental concepts which represent the basis for

understanding and conducting our research are presented. First, association

rules mining are presented followed with Apriori algorithm and introducing

related performance metrics. Then text preprocessing is explained since it is a

prerequisite for any text mining task. Since we are using MapReduce model

as the underlying computing model, it will be presented with its programming

model and its realization Apache Hadoop and its related Hadoop Distributed

File System (HDFS).

 Association Rules Mining

Association rule mining, one of the most important and well researched

techniques. It aims to extract interesting correlations, frequent patterns,

associations or casual structures among sets of items indata repositories.

Association rules are widely used in various areas such as telecommunication

networks, market and risk management, inventory control [24].

In a database of transactions D with a set of n binary attributes (items) I, a rule

is defined as an implication of the form

X ==>Y where X, Y I and X ∩ Y = ∅.

There are two important basic measures for association rules, support (s) and

confidence (c). Since the database is large and users concern about only those

frequently items, usually thresholds of support and confidence are pre-defined

by users to drop rules that are not interesting or useful. The two thresholds are

called minimum support and minimum confidence [24].

www.manaraa.com

17

Agrawal. [22] defined association rules as the implication rules that

inform the user about items most likely to occur in some transactions of a

database. They are advantageous to use because they are simple, intuitive and

do not make assumptions of any models. Their mining requires satisfying a

user-specified minimum support and a user-specified minimum confidence

from a given database at the same time.

Support (s) of an association rule is defined as the percentage of

records that contain X ∪Y to the total number of records in the database. The

count for each item is increased by one every time the item is encountered in

different transaction T in database D during the scanning process. Support(s)

is calculated by the following [24].

Support (XY) =
𝑆𝑢𝑝𝑝𝑜𝑟𝑡 𝑐𝑜𝑢𝑛𝑡 𝑜𝑓 𝑋𝑌

𝑇𝑜𝑡𝑎𝑙 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑡𝑟𝑎𝑛𝑠𝑎𝑐𝑡𝑖𝑜𝑛 𝑖𝑛 𝐷

Confidence (c) of an association rule is defined as the percentage of

the number of transactions that contain X ∪Y to the total number of records

that contain X, where if the percentage exceeds the threshold of confidence

an interesting association rule X ==>Y can be generated [24], Confidence is

a measure of strength of the association rules.

Confidence (X|Y) =
𝑆𝑢𝑝𝑝𝑜𝑟𝑡 (𝑋𝑌)

𝑆𝑢𝑝𝑝𝑜𝑟𝑡(𝑋)

www.manaraa.com

18

 Apriori Algorithm

Apriori is an algorithm that has been proposed in [25]. The discovery of

frequent itemsets is accomplished in several iterations. In each scan, a full

scan of training data is required to count new candidate itemsets from frequent

itemsets already found in the previous step. Apriori uses the Apriori property

to improve the efficiency of the search process by reducing the size of the

candidate itemsets list for each iteration. The Apriori property saysthat every

sub (k-1)-itemsets of the frequent k-itemsets must be frequent.

Figure 3.1 Pseudo Code for Apriori Algorithm [24]

Input: database D, Mini Support 𝜖 , Mini Confidence 𝜀

Output: Rt All association rules

Method:

1- L1 = large 1-itemsets;

2- for(k=2; Lk-1 ≠ ∅; k++) do begin

3- Ck =apriori-gen(Lk-1); //generate new candidates from Lk-1

4- for all transactions T ∈ D do begin

5- Ct=subset(Ck,T); //candidates contained in T.

6- for all candidates C ∈ Ct do

7- Count(C)=Count(C)+1; // increase support count of C by 1

8- end

9- Lk={C ∈ Ct | Count(C) ≥ 𝜖 × |D|}

10- end

11- Lf = ∪k Lk

12 Rt=GenerateRules(Lf , 𝜀)

www.manaraa.com

19

The Apriori algorithm for finding frequent itemsets is shown in Figure 3.1, is

used to produce Ck, and discarding all itemsets in Cn that do not pass the

support threshold. Once these candidate itemsets are identified from Ck, then

their supports are incremented. The rule generated that satisfy minimum

confidence.

3.2.1 Performance Metrics for the parallel Apriori

In order to demonstrate the effectiveness of parallel processing for a

problem on some platform, several concepts have been defined. These

concepts will be used in later chapters to evaluate the effectiveness of parallel

programs. These include speedup, scalability, and efficiency. They will be

used in later to evaluate the effectiveness of our proposed parallel Apriori.

Also the association rules generated must satisfy minimum support and

confidence.

 Speed up

A Standard metric to measure the efficiency of a parallel algorithm is the

speed up factor [26]. It’s defined as the ratio of the time required to solve a

problem on a single processor to the time required to solve the same problem

on a parallel computers [27], It’s defined as:

Sn= ts / tp

where ts is the execution time using only one processor and tp is the execution

time using n processor.

www.manaraa.com

20

 Arabic Text Preprocessing

Arabic Language is a widely used language in the world Arabic

Language it’s the 5th, It is spoken by more than 422 million people as a first

language . Arabic language has three forms; Classical Arabic (CA), Modern

Standard Arabic (MSA), and Dialectal Arabic (DA). Arabic alphabet consists

of the following 28 letters (ك ،ق ،ف ،غ ،ع ،ظ ،ط ،ض ،ص ،ش ،س ،ز ،ر ،ذ ،د ،خ،

ي ،و ،ه ،ن ،م ،ل ،ح ،ج ،ث ،ت ،ب ،أ) . The orientation of writing in Arabic is from

right to left [28].

Some preprocessing in the corpus is performed. It includes tokenizing string

to words, normalizing the tokenized words, applying stop word removal,

applying the suitable term stemming.

 String Tokenization

String tokenization is the process of breaking a stream of text into words,

phrases, symbols, or other meaningful elements called tokens. this tokens

becomes input for further processing such text mining [29].

Text documents contains white spaces, punctuation marks, and a number of

mark-ups that indicate font changes, and special characters. The aim of

tokenization phase is to detect and isolate the individual words by eliminating

these additional components.

 Stopwords Removal

Stopwords are terms or words that are too frequent in the text. These terms

are insignificant. So, we can remove them to reduce the space of the items

significantly.

www.manaraa.com

21

 Stemming

Word stemming is an important feature supported by present day indexing

and search systems. Stemming algorithm is a computational process that

gathers all words that share the same stem and has some semantic relation

[30]. The main idea is to improve recall by automatic handling of word

endings by reducing the words to their word roots, at the time of indexing and

searching. Recall in increased without compromising on the precision of the

documents fetched. Stemming is usually done by removing any attached

suffixes and prefixes (affixes) from index terms before the actual assignment

of the term to the Index.

Stemming is needed in many application such information retrieval

systems, natural language processing and compression of data [31].

Many stemmers have been developed for English and other languages.

Most of the major stemming techniques in Arabic are:

1- The affix removal process is mainly achieved before the stemming

process as one of the pre-processing steps. However, there are many

conflicts in the literature if this process is necessary or not.

2- Surface-based stemmers that comprise from at least two morphemes as

stated in [32]:

3- Root-based stemmers: the main goal of this type of stemmers is to

separate the root of a specific surface word. The prefixes and suffixes

are removed and they are followed by the extraction of root. The

residual stem is then compared with the similar patterns and length to

extirpate the root.

www.manaraa.com

22

4- Algorithmic Light Stemmers which eliminate a few number of suffixes

and prefixes without dealing with recognize patterns or infixes, and find

roots that listed in [32] and [33].

5- Simple Stemmers are considered as types of Light stemmers using them

the infixed vowels ا , و, ء,ي are removed from variant patterns as

concluded in [33].

 MapReduce Programing Model

MapReduce is one of the earliest and best known models in parallel and

distributed computing area, created by Google in 2004, based on C++

language. It is a programming model and associated implementation for

processing and generating large data sets in a massively parallel and

distributed manner [9]. It is composed of two functions to specify, “Map” and

“Reduce”. They are both defined to process data structured in (key, value)

pairs. The advantages of MapReduce is simple and easy to use, it’s doesn’t

have any dependency on data model and schema, high scalability, highly

fault-tolerant because each node in the cluster is expected to report back

periodically with completed work and status updates [20].

 MapReduce Architecture

The MapReduce is consists of two primitive functions: Map and Reduce.

The input for MapReduce is a list of (key1, value1) pairs and Map() is applied

to each pair to compute intermediate key-value pairs, (key2, value2). The

intermediate key-value pairs are then grouped together on the key equality

basis [34].

www.manaraa.com

23

The Map invocations are distributed across multiple machines by

automatically partitioning the input data into a set of M splits. The input

processed in parallel by different machines. Reduce invocations are

distributed by partitioning the intermediate key into R pieces using a

partitioning function. The number of partitions and the partitioning function

are specified by the user. Figure 1 shows the overall flow of a MapReduce

operation. When the user calls the MapReduce function the following actions

occurred in sequence:

1- The MapReduce library splite the input files into N pieces with size

between 16 MB to 64 MB.

2- It starts up many copies of the program on a cluster of machines. One

is the master and the others is workers, master assigns map and reduce

tasks to the workers.

3- A worker with a map task read the contents of it’s input and pass it to

the Map function as key/value pairs. The output of the Map function is

buffered to a memory.

4- Periodically, the buffered pairs are written to local disk, partitioned into

R regions by the partitioning function. Then the locations of these

buffered pairs on the local disk are passed back to the master to forward

these locations to the reduce workers.

www.manaraa.com

24

5- When a reduce worker is notified about these locations, it uses remote

procedure calls to read the buffered data from the local disks of the map

workers.

6- When a reduce worker read all intermediate data, it sorts it by the

intermediate keys so that all occurrences of the same key are grouped

together.

7- The reduce worker iterates over the sorted intermediate data and for

each unique intermediate key encountered, it passes the key and the

corresponding set of intermediate values to the user's Reduce function.

The output of the Reduce function is appended to a final output file for

this reduce partition.

8- Finally when all map tasks and reduce tasks have been finished their

job, the master wakes up the user program to return the result

Figure 3.2 MapReduce Execution overview [5]

www.manaraa.com

25

 Fault Tolerance

Since the MapReduce library is designed to help process very large

amounts of data using hundreds or thousands of machines, the library must

tolerate machine failures gracefully. When running jobs on a large cluster

where individual nodes or network components may experience high rates of

failure, MapRecuce can guide jobs toward a successful completion.

 Worker Failure

The master pings every worker periodically. If there is no response

received from a worker in a certain amount of time, the master marks the

worker as failed. Any map tasks completed by the worker are reset back to

their initial idle state, and therefore become available for scheduling on other

workers. Although, any map task or reduce task in progress on a failed worker

is also reset to idle and becomes available for rescheduling.

Completed map tasks are re-executed on a failure because their output is

stored on the local disk of the failed machine and the output is not accessible.

Completed reduce tasks do not need to be re-executed because their output is

stored in a global file system.

 Master Failure

The master write periodic checkpoints of the master data structures. If the

master task dies, a new copy can be started from the last check pointed state.

However, given that there is only a single master, its failure is unlikely; the

program aborts the MapReduce computation if the master fails.

www.manaraa.com

26

 Hadoop as MapReduce Realization

Apache Hadoop [6] is an infrastructure for distributed computing which

allow us to write and run distributed processing of large-scale data sets on

high performance cluster. Distributed computing is wide and varied field, but

the key distinctions of Hadoop are [35]:

 Accessible: Hadoop runs on large clusters of commodity machines or

on cloud computing services such as Amazon’s Elastic Compute Cloud

(EC2).

 Robust: Because it is intended to run on commodity hardware, Hadoop

is architected with the assumption of frequent hardware malfunctions.

It can gracefully handle most such failures.

 Scalable: Hadoop scales linearly to handle larger data by adding more

nodes to the cluster.

 Simple: Hadoop allows users to quickly write efficient parallel code.

Hadoop’s accessibility and simplicity give it an edge over writing and

running large distributed programs. Even college students can quickly and

cheaply create their own Hadoop cluster [36] . On the other hand, its

robustness and scalability make it suitable for even the most demanding jobs

at Yahoo and Facebook.

The cluster run jobs controlled by the master node, which is known as the

NameNode and it’s responsible for chunking the data, cloning it, sending the

data to the other slave nodes (DataNode), monitoring the status of the cluster,

and collecting the results [37].

www.manaraa.com

27

 Component of a Hadoop Cluster

Hadoop follows a Master-Slave architecture. As mentioned earlier. In

Figure 3.3 the components of a Hadoop cluster (NameNode, Secondary

NameNode and the JobTracker) are running on a single machine. Usually in

production clusters having more that 20-30 nodes, the daemons run on

separate nodes. a file in HDFS is split into blocks and replicated

across Datanodes in a Hadoop cluster [38]. You can see that the three files A,

B and C have been split across with a replication factor of 3 across the

different Datanodes. The nodes in the figure are:

Figure 3.3: The Component of the Hadoop Cluster [35]

www.manaraa.com

28

 NameNode

The NameNode in Hadoop is the node where Hadoop stores all the location

information of the files in HDFS. In other words, it holds the metadata for

HDFS. Whenever a file is placed in the cluster a corresponding entry of it’s

location is maintained by the NameNode.

 Secondary NameNode

The Secondary NameNode is not a failover node for the NameNode.The

secondary name node is responsible for performing periodic housekeeping

functions for the NameNode. It only creates checkpoints of the file system

present in the NameNode.

 DataNode

The DataNode is responsible for storing the files in HDFS. It manages the

file blocks within the node. It sends information to the NameNode about the

files and blocks stored in that node and responds to the NameNode for all file

system operations.

 JobTracker

JobTracker is responsible for taking in requests from a client and assigning

TaskTrackers with tasks to be performed. The JobTracker tries to assign tasks

to the TaskTracker on the DataNode where the data is locally present (Data

Locality). If that is not possible it will at least try to assign tasks

to TaskTrackers within the same rack. If for some reason the node fails

the JobTracker assigns the task to another TaskTracker where the replica of

www.manaraa.com

29

the data exists since the data blocks are replicated across the DataNodes. This

ensures that the job does not fail even if a node fails within the cluster.

 TaskTracker

TaskTracker is a daemon that accepts tasks (Map,Reduce and Shuffle)

from the JobTracker. The TaskTracker keeps sending a heart beat message to

the JobTracker to notify that it is alive. Along with the heartbeat it also sends

the free slots available within it to process tasks. TaskTracker starts and

monitors the Map & Reduce Tasks and sends progress/status information back

to the JobTracker.

 Hadoop Distributed File System (HDFS)

Hadoop Distributed File System (HDFS) [39][36,7] is a distributed file

system designed for storing and supporting very large files, it provides global

access to files in the cluster. For maximum portability, HDFS is implemented

as a user-level files system in Java which exploits the native file system on

each node. Files in HDFS are divided into large blocks, typically 64MB, and

each block is stored as a separate file in the local file system. HDFS is

implemented by two services: the NameNode and DataNode. The NameNode

responsible for maintaining the HDFS directory tree, and is a centralized

service in the cluster operating on a single node. Clients contact the

NameNode in order to perform common file system operations, such as open,

close, rename, and delete. The NameNode does not store HDFS data itself,

but rather maintains a mapping between HDFS file name, a list of blocks in

the file, and the DataNodes on which those blocks are stored.

www.manaraa.com

30

In addition to a centralized NameNode, all remaining cluster nodes provide

the DataNode service. Each DataNode stores HDFS blocks on behalf of local

or remote clients. Each block is saved as a separate file in the node’s local file

system. Because the DataNode abstracts away details of the local storage

arrangement, all nodes do not have to use the same local file

Figure 3.4: Hadoop Distributed File System Architecture [37]

system. Blocks are created or destroyed on DataNodes at the request of the

NameNode, which validates and processes requests from clients. Although

the NameNode manages the namespace, clients communicate directly with

DataNodes in order to read or write data at the HDFS block level. Hadoop

MapReduce applications use storage in a manner that is different from

general-purpose computing. First, the data files accessed are large, typically

tens to hundreds of gigabytes in size. Second, these files are manipulated via

streaming access patterns typical of batch-processing workloads. When

www.manaraa.com

31

reading files, large data segments (several hundred kilobytes or more) are

retrieved per operation, with successive requests from the same client iterating

through a file region sequentially. Similarly, files are also written in a

sequential manner.

This emphasis on streaming workloads is evident in the design of

HDFS. First, a simple coherence model (write-once read-many) is used that

does not allow data to be modified once written. This is well suited to the

streaming access pattern of target applications, and improves cluster scaling

by simplifying synchronization requirements. Second, each file in HDFS is

divided into large blocks for storage and access, typically 64MB in size.

Portions of the file can be stored on different cluster nodes, balancing storage

resources and demand.

Manipulating data at this granularity is efficient because streaming-style

applications are likely to read or write the entire block before moving on to

the next. In addition, this design choice improves performance by decreasing

the amount of metadata that must be tracked in the file system, and allows

access latency to be amortized over a large volume of data.

 Summary

 In this chapter, we presented an overview of the basic theoretical foundation

that related to our research. We presented Apriori algorithm, we described

performance metrics that used to evaluate the effectiveness of a parallel

Apriori algorithm, MapReduce, Hadoop platform, Hadooop Distributed File

System. In the next chapter, we provide a detailed description of the proposed

parallel Apriori approach.

www.manaraa.com

32

4 Chapter 4 The Proposed Parallel
Apriori Approach

In this chapter we present the proposed parallel Apriori algorithm

approach. We describe all steps of the proposed parallel Apriori using the

psydocode and diagrams. We use MapReduce model to solve the problem of

processing a large scale Arabic text. First, we present the steps of collecting

Arabic text documents and applying text documents and applying text

preprocessing. Second, we describe the steps of splitting and distributing the

documents of the collected corpus as MapReduce tasks. Finally, we present

the Apriori algorithm using MapReduce model.

 The Overall Apriori Approach

Figure 4.1 shows the workflow of the parallel Apriori approach: the approach

consists of the following phases

1- Corpus collection and cleaning: The corpus is collected and divided

into text documents, then text preprocessing is applied to remove non-

Arabic text, perform tokenization, remove Arabic stop word and

perform light stemming.

2- Text preprocessing: some preprocessing in Arabic corpus is

performed. First we applying stop words removal, tokenizing string to

words and applying suitable term stemming. It is worth mentioning that

the processing time is not considered as part of the performance

evaluation since it is performed only once for the corpus used

repetitively in the experiments.

www.manaraa.com

33

3- HDFS configuration, splitting and data uploading: it’s important to

split the problem into sub-problem that can be executed in parallel and

identify the data on which the computational performed, and then

partitioning this data across various tasks.

The task performs the computations on its own data. In our algorithm

the input data (corpus) are preprocessed and transferred in to sequence

of files and then we upload it to the HDFS. The HDFS splits the corpus

in to 16 MB to 64 MB chunks each presented as map task and distribute

them among the workers. The data replication is 3 times (by default).

In addition to that there are other configuration parameter such as:

document number, classes number and the documents number in each

class of corpus.

Next, steps, 4, 5 and 6 represent the core of the approach in terms of the

Apriori algorithm.

4- Generate frequent itemsets and their occurrence in each split: in

this step the frequent itemsets are generated for each split resulted from

the previous step and the MapReduce model outputs the itemsets along

their occurrences in the split using one map, one reduce function. This

is explained in detail in Section 4.3.2.

5- Generate frequent itemsets and their occurrence in all splits: based

on the generated itemset from the previous step, the candidate itemsets

and its occurrence in the whole splits as part of Apriori algorithm are

generated using one map and one reduce function. This step is detailed

in Section 4.3.3.

6- Generate strong association rules: after generating the frequent

itemsets for all the data, we generate the association rules using one

www.manaraa.com

34

map and one reduce function with predefined minimum confidence to

generate strong rules. This step is detailed in Section 4.3.4.

Figure 4.1 Workflow of the Proposed Approach

The above steps explains briefly the Apriori approach, next (in Section 4.2

and Section 4.3) we present each of these steps in details and how Apriori

algorithm is used as a set of MapReduce functions.

www.manaraa.com

35

 Corpus Collection

Collecting the Arabic data is one of the most difficulties in this work

because we want to find a large and free Arabic corpus for evaluating the

parallel Apriori algorithm.

We have different datasets available for Apriori algorithm in English

language while the Arabic data is fewer. The most popular Arabic text corpus

used in text mining cannot satisfy our experiments data size for large-scale

Arabic text corpus. So we choose to collect the real data Arabic text corpus

from Shamela library [40] it contains large collection of data in different

Arabic fields.

We collect the documents from Shamela library this documents needs to

be processed, First compiling and labeling text documents into corpus then

converting document files into text format with UTF-8 Encoding using a word

to text converter (Zilla).

The Shamela corpus is categorized into eight subjects, Creed, History,

Trajem, Usual, Tafsir, Sirah, Al-Hadith and Fiqh. The corpus contains

101,647 text documents with size of 5,310 MB.

Next, text preprocessing and the MapReduce parallel Apriori algorithm is

described in more details.

www.manaraa.com

36

 The parallel Apriori Algorithm as a MapReduce

Model

Building the parallel Apriori is the core of our approach .It includes four main

phases: text preprocessing phase, generating frequent itemset for each split,

generating frequent itemset for each split for all splits, and generate

association rules phase. These phases are shown in Figure 4.2

As a MapReduce processing model, in the first phase two steps are conducted

(i) the data divided in to (m) files (ii) the text preprocessing is performed

using MapReduce computations.Each map function takes one split as input,

we have also a mapper and reducer functions.

Figure 4.2 proposed parallel Apriori approach

www.manaraa.com

37

The output of this phase is a frequent k-itemsets and their occurrence for each

split as a list of intermediate key/values.

The second phase has a MapReduce computation for generating candidate

frequent itemsets for all the data, the input of this process is an input split and

a file contained all partial frequent k-itemsets that resulted from the first phase

and the output is the frequent k-itemsets and its occurrence in the whole input

data. And then used the frequent itemsets to generate the association rules.

Next we present in details these two phases and their relationships based on

the proposed approach as shown in figure 5.2.

4.3.1 Text Preprocessing Phase

 Applying the Apriori Approach requires usually a preprocessing stage that

would remove punctuation marks, and might returning the words to their stem

or roots. Figure 4.3 shows these steps in details, they include removing non-

Arabic text, tokenizing string to words, stop words removal, term stemming.

These steps are details as follows:

 All the non-Arabic texts such as the digits and punctuation marks, non-

Arabic letters.

Figure 4.3: Text Preprocessing Details

www.manaraa.com

38

 Tokenization consists of separating strings by word boundaries, we

used white space tokenization because the space is the only way to

separate words in Arabic language.

 Arabic stop word removal that delete tokens which is not content-

bearing.

 Stemming to remove all possible affixes and reduce the word to its stem

The text preprocessing algorithm is based on [40], we covert it to parallel

using MapReduce programming model as shown in (Algorithm 4.1) map

phase and (Algorithm 4.2) the reduce phase.

Algorithm 4.1: The Map Phase of Text Preprocessing

Input:

Key: docnam, // one text document for each map

Value: content, //content of the document

Output:

key: docname,

Value: tokenized content, // content of the document after applying tokenization

For each line ∈ Document

Token=Tokenize (line); // tokenizing string to word

If (Token.hasMoreTokens)

docTok docTok ∪ Token;

end if

end for

 The map phase (Algorithm 4.1) of the preprocessing algorithm takes the

document as input each map function takes one document as input, this

function tokenized the string to words, The aim of the tokenization phase is to

detect and isolate the individual words by eliminating additional components.

www.manaraa.com

39

For the purposes of this work, it is assumed that an Arabic word is a sequence

of Arabic letters and diacritical marks without separators (space or

punctuation marks).

Algorithm 4.2: The Reduce Phase of Text Preprocessing

Input:

Key: docname, // one text document for each reduce

Value: content, // content of the document

Output:

key: docname,

Value : conent, //content of the document after preprocessing

For each line ∈ Document

 Remove non-Arabic character;

For each word ∈ line do

If (word ∈ stopword.txt)

 Remove word;

end loop

 Remove prefixes;

 Remove suffixes;

If (word ∈ similes.txt) then

 Substitute similar for word;

end loop

end loop

The reduce phase (Algorithm 4.2) takes the document from the map

function and perform text preprocessing it includes:

www.manaraa.com

40

 Cleaning process: to draw the list of stop words- the set of words those

are deemed “irrelevant"- such as الذي , لذلك, مع and to remove all non-

Arabic elements.

 stemming is used for reducing inflected (or sometimes derived) words

to their stem, base or root form.

4.3.2 Phase One: Generate Frequent Itemsets for Each Split

 In this phase the data is divided into logical Input Splits, each of which is

 Algorithm 4.3 The Mapper of Phase 1

Input: split of the data Si,min-sup

Output: (key, value),

key: element of frequent k-itemset,

value: the occurrence of the element,

Map(object , Si) // Map function

L1=find-frequent-1-itemsets(Si)

For(k=2; Lk-1≠ ∅,;k ++)

Generate new candidate Ck;

For each candidate c ∈Ck

c.count++;

end for

L={ c∈Ck | c.count ≥ 𝑚𝑖𝑛 − 𝑠𝑢𝑝}

if itemset 𝐼 ∈ L

output (I , pcount);

end map

end

 then assigned to a Map task then the map worker calls the map function to

process the input split.

www.manaraa.com

41

The Map function (Algorithm 4.3) reads one split at a time and output a list

of intermediate(key , values) pairs where key is the element of the frequent

itemset and the value is its occurrence. The data from the mapper is written in

the temporary files in HDFS to be used by combiner.

The reducer (Algorithm 4.4) takes the inputs from the mapper and sum up the

values associated with the same key, and writes the value in the output file in

the increasing order of the keys. The output is a list L of (key, value) pairs

where key is an element of frequent itemsets and the value equal one, this list

Li is stored in a temporary file in HDFS.

 Algorithm 4.4: The Reducer of Phase 1

Input: (key1, value1),

Key1: element of frequent k-itemset,

Value1: the occurrence in each split,

Output: (key2, 1),

Key2: element of candidate frequent k-itemsets,

Reduce(key1, value1) // Reduce function

Out(key2, 1); // collected in L1

End reduce

End

4.3.3 Phase Two: Generate Frequent Itemsets for all Splits

 In the later iteration of Map/Reduce (phase two) the Map function

(Algorithm 4.5) takes in an input split and a file that contains the list of all

frequent itemset (Li), This map function counts the occurrence of each

element of the frequent k-itemset in the split and outputs a list of (key , value)

www.manaraa.com

42

pairs, where key is an element of frequent k-itemset and the value is the total

occurrence in the split.

 Algorithm 4.5: The Mapper of Phase 2

Input: split of the data Si, Li (temporal file in HDFS),

Output: (key, value),

Key : element of the list Li,

Value : the occurrence in the split,

for each itemset I in Li

Map(object , Si) // Map function

count = count the occurrence of I in Si,

output (I , count);

end Map

 end for

end

 Algorithm 4.6: The Reducer of Phase 2

Input: (key1, value1),

Key1: element of the candidate k-itemset,

Value1: the occurrence in each split,

Output: (key2, value2),

Key2: element of frequent k-itemset,

Value2: the occurrence in the whole data,

Reduce(key1, value1) // Reduce function

If (value2.hasNext())

Sum+=value2.getNext();

End if

If (sum>=min-sup-count)

Out(key2, sum); // stored in Lg (HDFS)

End if

End reduce End

www.manaraa.com

43

The reducer (Algorithm 4.6) takes the inputs from the mapper as (key1,

value1) where key is an element of the candidate k-itemset and the value is

its occurrence in each split. The output is a list L of (key, value) pairs where

key is an element of frequent k-itemsets and the value its occurrence in the

whole data.

4.3.4 Phase Three: Generate Association Rules

In this phase we generate the strong association rules using one map and one

reduce function (Algorithm 4.7) , the map function takes the list of frequent

itemsets and their support and takes the frequent itemset that survived the

support threshold and group the entries of the same key.

 Algorithm 4.7 : Map and Reduce for Generate Association Rules

Input: a list of all frequent itemset Lg, support suppi,

Output: R set of strong associated rules

Map Function(Lg , suppi)

for each frequent item Fi in Lg of suppi

group entries of the same key

End if

 End for

Reduce Function():

for every entry i which:

 calculate confidence conf = sup_i/ sup ;

 if conf >= confidence threshold

 R = R union (key --> conf);

End for

End

www.manaraa.com

44

The reduce function calculate the confidence of each itemset and output the

itemsets which satisfy the confidence threshold and the output will be the rule

with the confidence.

 Summary

In this chapter, we presented the proposed parallel Apriori approach

based on MapReduce model. First we prepossess the Arabic Textual data

through a MapReduce algorithm, then we used three algorithm to generate

frequent itemsets for each split of the data. One for finding the frequent

itemset in the input split, also we have the combiner to combine the data and

the reducer to generate the frequent item set. Also we have two parallel

MapReduce algorithms, one for calculate the occurrence of the frequent

itemset in the split, and the other to generate the frequent itemset and their

occurrence in the whole data. Finally we have a MapReduce algorithm to

generate a strong association rules.

www.manaraa.com

45

5 Chapter 5 Experimental Results and

Evaluation

In this chapter we present and analyze the experimental results to show

that our parallel Apriori algorithm can enhance execution time, speedup, and

generate strong association rules in terms of support and the confidence for

the association rules. The chapter includes three sections: Section 5.1 presents

the corpus used in our experimentation and gives insight into the main

characteristics of it. Section 5.2 describes the experimental environment and

the implementation of the parallel Apriori. Finally, Section 5.3 presents and

discusses the experimental results.

 The Corpus

We used Shamela corpus which is the largest freely public Arabic corpus

of text documents to perform our experimentations.

The Shamela Arabic corpus collected from multiple websites as presented in

Table 5.1, the corpus includes 101,647 text documents. Each text document

belongs to 1 of 8 categories (Creed, Usual, Fiqh, Hadith, History, Seerah,

Tafsir, and trajem).

We perform all text preprocessing (Section 3.3) on the corpus. This includes

non-Arabic text removal, Arabic stop word removal, stemming, and indexing.

www.manaraa.com

46

Table 5.1 : The Shamel Corpus

 Experimental Setup

This section describes the experimental environment for testing our

proposed approach. We implemente parallel Apriori algorithm using Java

programming language. The experimental environment is built on a

MapReduce cluster with 16 machines. One of these nodes is configured as

Hadoop Master or as the NameNode which controls the data distribution over

the Hadoop cluster and the other 15 machines acting as DataNodes. All the

nodes are identical in terms of the system configuration i.e., all the nodes have

identical processor - Intel Core i5 CPU with 3.20 GHz, 4.00 GB RAM, 500

GB hard disk drive and the operating system is Ubuntu 12.4 Linux with Java

JDK 1.8.0, and Hadoop version 1.2.0. The computers connected through a

local area network with speed of 10/100 Mbps.

Category
Number of Text

Document

Size of Text

Document(MB)

Hadith 23,530 1200

Trajim 14,722 784

Creed 6,776 373

Usual 2,245 128

History 9,232 488

Tafsir 18.048 973

Seerah 4,641 240

Fiqh 22,405 1180

Total 101,647 5310 MB

www.manaraa.com

47

HDFS splits corpus into 16 MB to 64 MB chunks each presented as a map

task and then distribute them among workers with 3 replications by default,

the input split includes location information for the next block and the byte

offset of the data needed to complete the record. HDFS stores replicas of each

data block to ensure both reliability, availability, and performance.

 Implementing the Parallel Apriori over Hadoop

The proposed parallel Apriori is implemented over Hadoop distributed

data processing platform as a MapReduce model that reflects the phases of

the approach: text preprocessing (Section 4.3.1), generating frequent itemsets

for each split (Section 4.3.2), generating frequent itemsets for all

splits(Section 4.3.3), and generating association rules (Section 4.3.4). The

overall results of the implementation is to increase the performance of the

apriori in terms of execution time and hence speedup while generating strong

association rules in terms of the confidence measure.

We follow steps in [35] for building the Hadoop cluster with Hadoop

version 1.2.0. The implementation of the parallel Apriori approach using

Hadoop involves the following steps:

 Step 1: All text preprocessing is performed on Shamela corpus also

using MapReduce algorithm (see Section 4.3.1). It is saved as text files

directories into NameNode then uploaded to HDFS which divides the

input text files into data blocks of size 64 MB. The HDFS stores the

metadata of each block in the NameNode and all the data blocks in the

DataNode.

www.manaraa.com

48

 Step 2: Running the Apriori algorithm over hadoop to generate the

frequent itemsets. Figure 5.1 show the execution time of the parallel

Apriori. The output of the Apriori is stored in file on HDFS.

 Finally, Generate the association rules using one map and reduce

function. We considered the strong rules that satisfy the minimum

support and confidence which we considered see (Table 5.4).

Figure 5.1: The Result of Running Parallel Apriori

 Experimental Results and Evaluation

This section summarizes and discusses the results of the experiments that

are conducted.

We use the collected corpus of 101,647 documents that are represented

as records and 4046 words that represented attributes. We evaluate the

performance of the parallel Apriori with respect to the execution time and

speed up (as described in section 3.6.1).

www.manaraa.com

49

5.4.1 Execution Time

To measure the execution time, we have executed the parallel Apriori

algorithm with Support 35 on a system of clusters which varies from 2 to 16.

We also have used different number of testing documents to observe the

effects of different problem (documents) size on the performance. Three sets

where used with the number of tested documents 5830, 10508, 20302

documents. Figure 5.1 shows a snapshot of the Hadoop run in one of the

experiments, it shows total execution time of the parallel Apriori including

the time of each phase except the text preprocessing. As we mentioned before

text preprocessing is not part of Apriori algorithm where it is performed only

once for all set of runs. The execution time here is equal to 2.8 minutes. More

specific execution time values for various runs are shown in Table 5.2.

Table 5.2: The Execution Times (sec.) of One Node and Multiple Node

Problems size

 No. of Nodes

5830

Documents

10508

Documents

20302

Documents

Standalone
1-Node 234.61 293.72 621.32

Parallel

Apriori

2-Node 127.96 140.54 219.53

4-Node 131.96 130.07 194.99

8-Node 42.30 51.90 91.29

12-Node 40.25 49.57 72.97

16-Node 32.17 40.14 53.69

www.manaraa.com

50

Table 5.2 shows the execution time of one node with MapReduce takes more

time than the parallel version. In the parallel Apriori the execution time

decreases when the number of processors increases. However, the parallel

implementation achieves a good execution time compared to the standalone

one. Also the execution time increases when the number of documents

increases. Figure 5.1 shows the curves of the execution time based on Table

5.2.

The sequential Apriori algorithm is not appropriate for experiment, because

of the large scale of documents.

Figure 5.2 : Execution Time

0

100

200

300

400

500

600

1 2 4 8 12 16

Ex
e

cu
ti

o
 T

im
e

 (
se

c)

Number of Nodes

No. of Nodes Vs Execution Time

5830 documents

10508 documents

20302 documents

www.manaraa.com

51

5.4.2 Speedup

To compute the speedup we using the formula:

Sn=ts / tp

where ts is the execution time using only one node and tp is the execution time

using n node which is gained from this parallelization as described in section

. The speedup is recorded in Table 5.3 and is illustrated in Figure 5.2

The parallel algorithm demonstrates linear speed up. When running an

algorithm with linear speedup, doubling the number of nodes doubles the

speedup. It is difficult to achieve linear speed up due to the communication

costs which increases as the number of document increases.

The time that the parallel Apriori spends does not appear to have a linear

relationship with nodes, this is due to the fact that when running Hadoop jobs,

starting a cluster for the first time takes some time. Also the execution time of

parallel Apriori on nodes have a few changes.

Table 5.3 : The Relative Speedup of the Proposed Parallel Aprioi

 Problems size

 No. of Nodes

5830

Documents

10508

Documents

20302

Documents

2-Node 1.83 2.09 2.37

4-Node 1.78 2.26 2.67

8-Node 5.55 5.66 5.71

12-Node 5.83 5.93 7.14

16-Node 7.29 7.32 9.71

www.manaraa.com

52

The results show that the Apriori algorithm have high speedup. Specifically,

as the size of records increase the speedup improves. Therefore, the parallel

Apriori can treat large scale Arabic text document efficiently.

The speedup improves in some cases, on the largest tested set (20302

documents), the parallel Apriori achieves relative speedups of 2.37, 2.67,

5.71, 7.14 and 9.71 on 2, 4, 8, 12 and 16 nodes respectively. When the size of

the tested document is small the speedup drop from linear to sub-linear. The

smallest tested documents sizes give similar results.

If we increase the number of nodes the speedup gains tend to drop. Figure 5.2

shows the speedups for the different document sets. When we used 4 nodes

the speedup improve from 1.83 to 2.37, on 8 nodes it improves from 1.78 to

2.67, and on 16 nodes it improves from 7.29 to 9.71. It can be shown that our

parallel Apriori algorithm gives better performance with larger volume Arabic

text documents than with smaller volume Arabic text documents.

www.manaraa.com

53

Figure 5.3 The Relative Speedup of the Proposed Parallel Apriori

5.4.3 Support and Confidence

Support is an important measure (Section 3.1) because a rule that has very low

support may occur simply by chance. The smaller the minimum support

threshold is, the more frequent itemsets there will be, so the execution time

will increase along with the decrease of the minimum support threshold. The

number of frequent items increases quickly along with decrease of minimum

support threshold. Table 5.4 shows the execution time for different

support values.

0

2

4

6

8

10

12

14

16

2 4 8 12 16

Sp
e

e
d

u
p

Number of nodes

Number of nodes vs speedup

5830 document

10508 document

20302 document

Linear(Ideal)

www.manaraa.com

54

Table 5.4 Minimum Support Threshold with Execution Time

Support Time (sec)

25 281.23

30 210.02

35 109.2

40 99.2

45 87.02

The confidence is used to measure the strength of the rules. Table 5.5 shows

the association rules generated with different support and confidence, the

number of rules decreases as the support increase. A low support rule is also

likely to be uninteresting. For these reasons, support is often used to eliminate

uninteresting rules. In Table 5.5, the rules with the minimum confidence

specified is considered strong rules.

So we considered the value of support 35 to generate the frequent itemsets

which lead to decrease the execution time if we use lower support 1 the

execution time will increase and the frequent itemsets also increase, the

number of rules also increase and some rules maybe occurred by a chance.

We considered the minimum confidence which used to determine the strength

of the rule be 60% this leads to generate a good number of rules that that are

considered meaningful and strong. For example as shown in the table, when

the support is 35 and confidence is 60%, the number of generated association

rules that are considered meaningful and strong is 641.

www.manaraa.com

55

Table 5.5 : The number of Rules Generated for Different Support and Confidence

Table 5.6 show an example of some rules resulted from the experiments on

hadith data. We have rules say:)افضل العمل(is (ايمان) and (الحج), this is true, we

have a hadith for)افضل الاعمال(.

Also we have rules say: (اشراط الساعة) is)الجهل(and)الخمر(, this is true, we have

a hadith for ()اشراط الساعة .

Another rules say (كل مسكر) is)حرام(this is true, we have a hadith for)المسكرات(.

 Table 5.6: Example of the Rules

Support 25 35 45

Confidence 50 % 60 % 70% 50 % 60 % 70 % 50 % 60 % 70%

Number of rules

568 452 322 690 641 388 755 599 512

 ايمان افضل عمل

 اسلام احسان ايمان

 الحج عملافضل

 الخمر اشراط الساعة

 الحياء ايمانمن

 الجهل اشراط الساعة

 مسكر حرام كل

 جوف ليل صلاة

 حسن الخلق البر

 تقوى الله امر

www.manaraa.com

56

 Summary

This chapter presented and analyzed the experimental results. It

presented the corpus characteristics, explained the experimental environment,

and the implementation of the parallel Apriori algorithm using MapReduce

model. Also, it presented the experimental results of the parallel Apriori and

its performance. Finally The evaluation of the quality of the parallel Apriori

model during sets of experiments.

Overall, results indicated that the parallel Apriori algorithm improved

the performance of the Apriori and this improvement became much more

obvious when the data is very large. The improvement in the execution time

and speedup.

 صيام جنة

 حج مبرور جنة

 رمضان صيام قيام

www.manaraa.com

57

6 Chapter 6 Conclusion and Future Work

Mining association rules from large Arabic text documents is an important

research in text mining. Apriori algorithm is of low efficiency when used with

large amount of computational power for generating frequent itemsets. Such

a drawback makes it unsuitable to handle a large volume of text documents

with high performance and in particular in the Arabic language.

We proposed a parallel Apriori approach for large-scale Arabic text

document based on MapReduce. It involves Arabic text documents collection,

Arabic text processing, design the suitable MapReduce computing model for

parallel Apriori over Hadoop platform, implementation of the parallel

algorithm using java programming.

We tested our approach using large scale Shamela-sourced corpus which

is the largest Arabic corpus of text documents. The test is performed on

Hadoop cluster consisting of 16 nodes as a MapReduce model. The

experimental results on the performance indicate that the parallel Apriori

algorithm design has very good speedup characteristics when the problem

sizes are scaled up.

The proposed approach can be used efficiently to generate frequent

itemsets from large scale Arabic text with high performance in terms of

execution time and speedup while generating strong association. Hence our

approach overcome the problem of low efficiency of the sequential Apriori

algorithm while maintaining the level of association rules generation.

There are several directions for improvement and future investigation. Our

work can be extended to cover larger computer clusters and Arabic text

www.manaraa.com

58

documents that will be more than one tera bytes. Additionally, we can apply

this parallel Apriori to various application domains such as weather data,

internet traffic, log files, medical information, among others to check its

generalization. We will also extend our work to cover a popular distributed

programming paradigms like MapReduce in a cloud environment. Further

algorithms can be applied to interesting applications. Finally the work can be

applied with other cloud-based technologies, where algorithms can be used

with big data techniques over MapReduce model to speed up the process and

give accurate results. Also for future work the Apriori suffers from the number

of scanning for the data in order to generate frequent itemsets we can take this

drawback for future.

www.manaraa.com

59

7 References

[1] R. M. AbuTair, "Design and Evaluation of a Parallel Classirier for Large-Scale

Arabic Text," Int.J.Comput, 2013.

[2] L. Yang, Ren-hua, "An Improved Apriori Algorithm for Association Rules,"

Tlekomnika, vol. 11, pp. 6521-6526, 2013.

[3] V. Wu, "Top 10 Algorithms in Data Mining," Knowledge and Information System,

pp. 1-37, 2008.

[4] S. Hammoud, "MapReduce Network Enabled Algorithms for Classification based

on Association Rules," PhD Thesis, 2011.

[5] S. G. Jeffrey Dean, "MapReduce: Simplified Data Processing on Large Clusters,"

ACM, vol. 5, pp. 107-113, 2008.

[6] "Apache Software," 2010. [Online]. Available: http://hadoop.apache.org/.

[Accessed 2015].

[7] S. Hairong Kuang, "The Hadoop Distributed File System," MSST, pp. 1-10, 2010.

[8] I. Ali, "Application of Mining Algorithm to find Frequent Patterns in a Text Corpus,"

International Journal of Software Engineering and its Applications, vol. 6, no. 3, pp.

127-134, 2012.

[9] C. D. Jimmy Lin, "Data Intensive Text Processing with MapReduce," Synthesis

Lectures on Human Language Technologies 3.1, 2010.

[10] A.-Z. A, "Mining Arabic Text using Soft-Matching Association Rules," Computer

Engineering & Systems, ICCES'07. International Conference, pp. 421-426, 2007.

www.manaraa.com

60

[11] B. A. Mohammed Al-Maolegi, "An Imporoved Apriori Algorithm for Association

Rules," International Research Journal of Computer Science and Application, vol.

1, pp. 1-8, 2013.

[12] P. G. Sanjeev Rao, "Implementing Improved Algorithm Over Apriori Data Mining

Association Rules Algorithm," International Journal of Computer Science and

Technology, vol. 3, pp. 489-493, 2012.

[13] U. Pol, "Design and Development of Apriori Algorithm for Sequential to concurrent

mining using MPI," International Journal of Computers & Technology, 2013.

[14] k. l. N.C.Mahanti, "A Novel Data Mining Algorithm for Semantic Web Based Data,"

International Journal of Computer Science and Security , pp. 160-175, 2010.

[15] B. J. Roberto J., "Efficiently Mining Long Patterns from Databases," ACM, vol. 27,

pp. 85-93, 1998.

[16] J. Woo, "Apriori MapReduce Algorithm," in International conference on Parallel

and Distributed Processing Techniques and Applications, 2012.

[17] N. T.V.Mahendra, "Data Mining for High Performance Data Cloud using

Association Rule Mining," IOSR Journal of Computer Engineering, pp. 16-22, 2012.

[18] O. Y. Osman Hegazy, "Ann Efficient Implementation of Apriori Algorithm Based

on Hadoop MapReduce Model," International Journal of Reviews in Computing,

vol. 12, pp. 59-67, 2012.

[19] S. B. Zeba Qureshi, "Improving Apriori Algorithm to Get Better Perfrmance with

Cloud Computing," International Journal of Software and Hardware Research in

Engineering, vol. 2, pp. 33-37, 2014.

[20] H. Kyong-Ha Leem, "Parallel Data Processing with MapReduce: A Survey," ACM,

vol. 40, pp. 11-20, 2012.

www.manaraa.com

61

[21] A.. Hung-chih Yang, "MapReduce Merge: A Simplified Relational Data Processing

on Large Clusters," ACM, pp. 1029-1040, 2007.

[22] R. Rakesh Agrawal, "Fast Algorithms for Mining Association Rules in Large

Databases," Computer Science and Technology, vol. 15, pp. 487-499, 1994.

[23] R. M. Abu Shab, "Large-Scale Arabic Text Classification Using MapReduce," MS.

Thesis, 2015.

[24] S.Q. Zaho, "Association Rule Mining: A Survey," anyang Technological University

, 2003.

[25] T. L. Rakesh Arrawal, "Mining Association Rules Between Sets of Items in Large

Databases," in SIGMOD, 1993.

[26] A. Grama, Introduction to Parallel Computing, Addison Wesley, 2003.

[27] D. Matei Zaharia, "Delay Scheduling: A Simple Technique for Achieving Locality

and Fairness in Cluster Scheduling," European Conference on Computer Systems,

pp. 265-278, 2010.

[28] "Arabic language," [Online]. Available: http://ar.wikipedia.org/wiki/ اللغة العربية.

[Accessed 2015].

[29] "Tokenization,"2015.[Online].Available:

http://en.wikipedia.org/wiki/Tokenization.

[30] O. F. Mohammed Aljlayl, "On Arabic Search: Improving the Retrieval Effectiveness

via a Light Stemming Approach," International Conference on Information and

Knowledge Managment, pp. 340-347, 2002.

[31] M. G. Noll, "Running Hadoop on Ubuntu Linux (Single-Node Cluster)," 2011.

[Online]. Available: http://www.michael-noll.com/tutorials/running-hadoop-on-

ubuntu-linux-single-node-cluster/#installation.. [Accessed 2015].

www.manaraa.com

62

[32] "Improving Stemming for Arabic Information Retrieval: Light Stemming and

Occurrence Analysis," ACM Iternational Conference, pp. 275-282, 2002.

[33] J. B. Lovins, "Development of Stemming Algorithm," Mechanical Translation and

Computational Linguistics, pp. 23-31, 2000.

[34] C. D. Paice, "An Evaluation Method for Stemming Algorithms," ACM SIGIR

Conference, pp. 42-50, 1994.

[35] T. White, Hadoop: The Definitive Guide, O'Reilly, 2012.

[36] C. Lam, Hadoop in Action, Manning Publications, 2010.

[37] A. Alam, "Hadoop Architecture and Its Issues," International conference on

Computational Intelligence, vol. 2, pp. 288-291, 2014.

[38] "Apache Hadoop. Welcome to Apache Hadoop," Apache, 2010. [Online]. Available:

http://hadoop.apache.org/. [Accessed 2015].

[39] H. E.-R. Mostafa Abd-El-Barr, Fundamental of Computers Organization and

Architecture, Willey, 2005.

[40] "Shamela Library," [Online]. Available: http://shamela.ws. [Accessed 2015].

[41] H. K. Konstantin Shvachk, "The Hadoop Distributed File System," MSST, pp. 1-10,

2010.

[42] C. D. Jimmy Lin, "Data Intensive Text Processing with MapReduce," Synth.

Lect.Hum.Lang Techno, vol. 3, pp. 1-177, 2010.

[43] U. Y. Raymond Moone, "Text Mining with Information Extraction,"

Multilingualism and Electronic Language Management, pp. 141-160, 2005.

