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Abstract 

Aprioi is the most popular algorithm that is used to extract frequent 

itemsets from large data sets where these frequent itemsets can be used to 

generate association rules. Such rules are used as a basis for discovering 

knowledge such as detecting unknown relationships and producing results 

which can be used for decision making and prediction.  

When the data size is very large, both memory use and computational 

cost are very expensive. And in this case single processor’s memory and CPU 

resources are very limited which make the algorithm performance inefficient. 

Parallel and distributed computing is effective for improving algorithm 

performance.  

In our research we propose a parallel Apriori approach for large volume 

of Arabic text document using MapReduce with enhanced speedup and 

performance, Apriori algorithm that has been popular to collect the itemsets 

frequently occurred in order to compose Association Rule, MapReduce is a 

scalable data processing tool that enables to process a massive volume of data 

in parallel. 

The experiments show that the parallel Apriori approach can process 

large volume of Arabic text efficiently on a MapReduce with 16 computers, 

which can significantly improve the execution time and speedup and also 

generate strong association rules. 

 

Keywords: Apriori, frequent itemset, Association Rule, MapReduce and 

Hadoop.  



www.manaraa.com

II 

 

 الملخص

واستخدامها في النص العربي باستخدام نموذج   Aprioriخوارزمية عنوان البحث: 

MapReduce 

من اشهر الخوارزميات التي تستخدم لاستخراج مجموعة من البنود  Aprioriتعتبر خوارزمية     

 (Association rules)حصول على قواعد (هذه البنود تستخدم للfrequent itsemsetsالمتكررة )

لاكتشاف المعرفة. هذه القواعد تساعدنا في التنبؤ بالعلاقات غير المعروفة والحصول على النتائج التي 

 تساعد في التنبؤ واتخاذ القرار.

مكلفة ليدية للمعالجات التقبات عندما يكون حجم البيانات كبير فيعتبر استخدام كل من الذاكرة والحسا    

جدا بالإضافة الى ذلك فان ذاكرة المعالج الواحد ومصادره محدودة جدا وهذا يؤدي ضعف في اداء 

 الخوارزمية. لذلك تعتبر الحوسبة المتوازية والموزعة فعالة جدا في تحسين اداء الخوارزمية.

  MapReduceموذج الحوسبة المتوازية باستخدام ن Aprioriفي هذا البحث قمنا باقتراح خوارزمية 

الاكثر شهرة  Aprioriخوارزمية  ,(performanceوالأداء )  (speedup)مع تعزيز التسريع 

تكوين قواعد  وتستخدم هذه البنود من اجلالتي تظهر تكرارا  (itemsets)تستخدم في جمع البنود 

(Association rules) يعتبر نموذج الحوسبة المتوازية ,(MapReduce)  اداة لمعالجة البيانات

 حيث تستطيع معالجة كم ضخم من البيانات بالطريقة المتوازية.

المتوازية المقترحة تعالج بكفاءة النصوص العربية  Aprioriاظهرت النتائج ان تطبيق خوارزمية 

جهاز حاسوب  61مكون من  MapReduceذات الحجم الكبير حيث اجريت التجارب على نموذج 

 ت النتائج تحسنا كبيرا على التسريع والاداء وايضا الحصول على قواعد قوية.واظهر
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Chapter 1 Introduction 

Text mining has introduced tools and techniques to extract interesting 

patterns from large data. Apriori algorithm is the most classical and important 

algorithm for mining frequent itemsets. Frequent patterns, are patterns that 

frequently appear in a data collection. Itemsets, subsequences, or 

substructures are different terms used to refer to patterns of different kinds. 

Text mining concerns looking for patterns in unstructured text. The 

purpose of Text mining is to process unstructured (textual) information, 

extract meaningful numeric indices from the text and make the information 

contained in the text accessible to the various data mining algorithms. 

Information can be extracted to derive summaries for the words contained in 

the documents or to compute summaries for the documents based on the words 

contained in them [1].  

Finding frequent itemsets is one of the most important fields of data 

mining. Apriori algorithm is the most established algorithm for finding 

frequent itemsets from dataset; however, it needs to scan the dataset many 

times and to generate many candidate itemsets [2]. Association Mining is one 

of the most important data mining’s functionalities and is the most popular 

technique that has been studied by researchers [3]. Mining of frequent 

itemsets is an important phase in association mining which discovers frequent 

itemsets in data sets.  

MapReduce is a scalable programming model. The programmer writes 

two functions a map function and a reduce function each of the functions 
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define a mapping from one set of key-value pairs to another [4]. The map 

function takes an input as key/value and produces a set of intermediate 

key/values. It groups all the intermediate values associated with same key and 

passes them to the reduce function. The reduce function takes an intermediate 

key and a set of values for the key and merges all values together to form 

smaller set of values [5].  

One widely used implementation of MapReduce is Apache Hadoop [6] 

which is a collection of related services that compose an infrastructure for 

distributed computing. Hadoop is known for MapReduce and its Hadoop 

Distributed File System HDFS [7], it provides complementary services, such 

as Core, MapReduce, HDFS, and HBase. Hadoop MapReduce is distributed 

data processing model and execution environment that runs on large clusters 

of commodity machines.  

One of the most important advantages of MapReduce is that it provides 

an abstraction that hides many system-level details from the programmer. 

Therefore, the developer can focus on what computations need to be 

performed as opposed to how those computations are actually carried out or 

how to get the data to the processes that depend on them [8]. MapReduce 

provides a means to distribute computation without burdening the 

programmer with the details of distributed computing [9]. Because of the 

benefits of MapReduce model we use it as parallel programming model. 

The majority of the research works conducted on generating frequent 

itemsets is mainly related to English corpuses and little works  have focused 

on Arabic data. Thus, this work investigate the problem of generating frequent 

itemsets from Arabic data using Apriori algorithm. We prefer Apriori 
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algorithm over other algorithms as it’s the simplest and we have recently a 

good work on parallel Apriori algorithm so we can overcome the drawbacks. 

We build a MapReduce-based parallel Apriori approach for large scale 

of Arabic text to generate frequent itemsets and used this itemsetse to generate 

association rules and also increase the algorithm performance by 

implementing the algorithm in parallel. 

To build our approach, we collect a large volume of Arabic corpus and 

perform several preprocessing steps to prepare the corpus for applying 

Apriori. After that we design the parallel Apriori. We conduct several 

experiments to apply the parallel Aprior approach. 

 

 Statement of the Problem  

Apriori algorithm for the generation of frequent itemsets in text mining, 

although simple, suffers from performance bottleneck when used with large 

data sets. There have been several attempts to improve its performance 

through parallelization, but none of these attempts have considered the 

attractive MapReduce programming model and Arabic data sets. 

Therefore there is a need to develop a high performance Apriori approach over 

MapReduce programming model to process large Arabic data and generate 

frequent itemsets which can be used for generating association rules.  

 Objectives  

1.2.1 Main objectives  
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The main objective of this research is to develop an efficient parallel 

Apriori approach over MapReduce to generate frequent itemsets and use these 

frequent itemsets for generating association rules from Arabic data.  

1.2.2 Specific objectives  

 Designing the suitable MapReduce computing model for parallel 

Apriori. 

 Determining and collecting an Arabic corpus which is suitable for 

Apriori algorithm.  

 Implementing the algorithm based on the designed model.  

 Executing and testing the algorithm using the collected Arabic corpus.  

 Evaluating the performance of the algorithm based on time, speedup. 

  Scope and limitations 

The work is conducted with the following limitations and assumptions: 

1- We use Apache Hadoop framework to build the clusters. 

2- Experiments are conducted on a set of processors and their own 

exclusive memory (multicomputer cluster).  

3- Some text preprocessing is performed using RapidMiner. 

4- The MapReduce  text preprocessing execution time is not considered. 

5- We use 2, 4, 8, 12 and 16 processors to conduct the experiments and to 

measure the effects on the speedup and the execution time of proposed 

approach. 

6- The strength of association rules is based on the minimum support and 

confidence threshold which is specify during the experiments. 
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 Importance of the Thesis  

1- Improve the efficiency of Apriori algorithm using MapReduce in terms 

of time, resources, and cost. 

2- Generate association rules from Arabic data that can be used for 

detecting unknown relationships which can be used for decision 

making and prediction.  

3- Improve the Apriori algorithm to naturally fit with the MapReduce 

programming model to benefit from the high scalability of MapReduce 

applications for Arabic data which is not exist.  

4- Overcome the issue low performance for the sequential Apriori 

algorithm due to the large amount of computational power. 

 

  Methodology  

The methodology to be followed in order to complete this research and 

achieve its objectives is illustrated in Figure 1.1 and consists of the following 

phases:  

 Research and Survey: this includes reviewing the recent literature 

closely related to the thesis problem statement. After analyzing the 

existing methods, identifying the drawbacks or the lack of existing 

approaches, we formulate the solution to overcome the drawbacks.  
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 Data Collection: we collect largest freely public Arabic corpus of text 

documents with multiple domains. 

 Text Preprocessing:  some preprocessing in Arabic corpus is 

performed. It includes applying stop words removal, tokenizing string 

to words and applying suitable term stemming. 

  Design the Parallel Apriori Approach: we build the parallel Apriori 

algorithm for large volume Arabic text based on MapReduce model. 

  Implementation of the algorithm: we implement the proposed 

approach using Java programming language, and Hadoop platform with 

Figure 1.1 : Stages of the Research Methodology 
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a multicomputer cluster on the largest freely public Arabic corpus of 

text documents.  

 Evaluation: the proposed approach is evaluated for speedup and 

execution time using different performance metrics. 

 Results and Discussion: In this stage we analyze the obtained results 

and justify the effectiveness of the proposed approach. 

  

 Research Format  

    The thesis is organized as follows: Chapter 2 presents and discusses the state 

of the art and related works. In Chapter 3 includes the theoretical foundation 

of the research. Chapter 4 presents the proposed parallel Apriori approach. 

Chapter 5 presents the experimental results and evaluation. Finally, Chapter 6 

presents the conclusions and future work. 
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2 Chapter 2  Related work 

In this chapter, we give an overview to approaches related to the main 

topic of this thesis. The first section presents the Apriori algorithm for 

association mining and the works conducted in improving the performance of 

the Apriori in sequential and in parallel using MPI, the second section includes 

the MapReduce as a parallel programming model which is used for data 

processing across massive data sets. It also discuss the hadoop as a 

programming framework that support processing of large data.    

  Apriori Algorithm for Association Mining 

Association mining is one of the most important data mining’s 

functionalities and it is the most popular technique. Aprioi algorithm which 

used for finding frequent item set and use this item to generate association 

rules. The benefits of these rules are detecting unknown relationships, 

producing results which can be used for decision making and prediction. 

There are numerous of researches and projects that exploit Apriori algorithm 

and how to improve its efficiency.  

Zoghby [10]This work introduces a new system developed to discover 

soft-matching association rules using a similarity measurements based on the 

derivation feature of the Arabic language. In addition, it presents the features 

of using Frequent Closed Item-sets (FCI) concept in mining the association 

rules rather than Frequent Itemsets (FI). 

Najadat and Maolegi et al. [11] indicate the limitations of the original 

Apriori algorithm of wasting time for scanning the whole database searching 
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on the frequent itemsets, and presents an improvement on Apriori by wasted 

time depending on scanning only some transactions. They showed by 

experimental results that applied on the original Apriori and the improved 

Apriori that the new Apriori reduces the time consumed by 67.38% in 

comparison with the original Apriori, and makes the Apriori algorithm more 

efficient and less time consuming. 

The results show that the improved Apriori algorithm that scan only 

some transactions instead of the whole database reduce the consumed time.  

Rao and Gupta. [12] present a new scheme for finding the rules out of 

transactional datasets which improve the original Apriori in terms number of 

database scans, memory consumption, and the interestingness of the rules. It 

also avoids scanning the database again and again. So, they use Frequent 

Pattern (FP) Growth ARM (Association rule mining) algorithm that is more 

efficient to mine patterns when database grows.  

Ali [8] propose a method for finding frequent patterns using AFS 

(Apriori for Frequent Sub path) and use this method to extract frequent 

patterns from Quran. using a graph, and apply a frequent sub-path mining  

algorithm on it to generate frequent patterns. The basic idea is to represent 

Quranic text using a complete graph, and apply an efficient frequent pattern 

mining algorithm which can take advantage of the graph representation.  

The previous work using Arabic data (Quran) to generate frequent pattern, the 

algorithm showed that frequent patterns generated by the algorithm cluster 

similar or identical verses.   
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Urmila. [13] presents features of parallel algorithm for mining 

association rules using MPI for message passing based on the Master-Slave 

based structural model to achieve high-performance parallel computing,  the 

algorithm is implemented using Master-Slave structure and communicate by 

MPI between the hosts, this make full use of the resources, a unified 

scheduling, coordination of treatment, under the cluster environment.  

The previous work showed that is parallelization is the most suitable 

solution to efficient data mining.  

Lal and Mahanti.[14] propose an algorithm to mine data from cloud 

using sector/sphere framework, Sector/Sphere is an  open source software 

suite for high-performance distributed data storage and processing, Sector is 

a distributed file system targeting data storage over a large number of 

commodity computers. Sphere is the programming framework that supports 

massive in-storage parallel data processing for data stored in Sector. The 

algorithm can avoid redundant rules, the performance of the algorithm 

improved when compared with the existing algorithms.  

Liu and Liu. [2] build a knowledge system established based on the 

analysis of classical Apriori. The improved algorithm adopted the matrix to 

express the database it scans the database once and eliminate a huge number 

of linking operations in finding frequent item sets. The experimental results 

showed that the new algorithm is improved both the efficiency and the 

performance.   

    Bayardo and Roberto [15] propose the Max-Miner algorithm for extracting 

the maximal of frequent itemset .the previous algorithms based on Apriori 

scale exponentially with longest pattern length. The idea is to expand sets over 
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an ordered and finite item domain where four items are denoted by their 

position. The particular ordering imposed on the item domain affects the 

parent child relationships in the set-enumeration tree but not its completeness 

experiments on real data showed that when the patterns are long, the new 

algorithm is more efficient. 

Zoghby et al. [10] presents a system that uses new similarity measures 

and a modified association rule generation to discover soft-matching rules 

from Arabic textual databases automatically constructed from document 

corpora. The system induces accurate predictive rules. The excellence of the 

soft- matching over the hard exact matching is clear in the system results. 

They use the algorithm called CHARM. It only prunes closed itemset lattice 

rather than all itemsets lattice. CHARM can reduce both the number of 

database passes and CPU overhead incurred by the frequent itemset search as 

well as the efficiency and effectiveness of the rules. 

The works presented above shows the importance of Apriori algorithm 

and the same time shows its main limitation, namely, the slowness of the 

sequential version of the algorithm which we try to overcome. 

Urmila [13] implement Apriori using MPI they showed that parallelization is  

the most suitable solution to increase the performance of Apriori algorithm. 

In my work I used MapReduce over MPI. 

Ali using AFS (Apriori for Frequent Sub path) to extract frequent patterns 

from Quran. using graph but the implementation is in sequential not parallel. 

In my thesis I used Arabic text but in parallel. Also (Zoghby) present the 

CHARM algorithm to produce soft-matching rules from Arabic textual 

databases also the implementation in serial nor parallel. 
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 MapReduce Based Parallel Algorithms for Large 

Data Processing  

MapReduce is a programming model and an associated implementation 

for processing large data sets. User specify a map function that processes a 

key/value pair to generate a set of intermediate key/value pairs, and a reduce 

function that merges all intermediate values associated with the same 

intermediate key.   

Woo. [16] presents Apriori algorithm that runs on paralle  MapReduce 

framework namely Apache Hadoop over a cluster of computers. The author 

also explains the time complexity which theoretically shows that the 

algorithm have higher performance than the sequential algorithm. The item 

sets produced by the algorithm can be used to compute and produce 

association rules for market analysis. But the algorithm needs to be built and 

generate experimental result to prove that the proposed algorithm works.  

Mahendra and Deepika [17] discusses an algorithm to mine the data from 

the cloud using  sector/sphere framework  with  association  rules  they  also  

discussed  the integration of Sector/Sphere framework and  Association rule. 

This enables the application of association rule algorithm to the wide range of 

cloud services available on the web. Sphere allow developers to write certain 

distributed data parallel applications with several simple APIs. A Sphere 

database consists of one or more physical files. Computation in sphere is done 

by user-define function. the result can be written to either the local disk or 

common destination files on other nodes.  
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Hegazy. [18]implements an efficient MapReduce Apriori algorithm 

based on Hadoop-MapReduce model which needs only two phase to find all 

frequent itemsets, they also compared the new algorithm with two existed 

algorithms which need either one or k phases to find the same frequent 

itemsets. Experimental results showed that the proposed Apriori algorithm is 

efficient and exceed the other two algorithms.  

Qureshi and Bansal [19] used association  rule mining as a data mining  

technique  they  have improved the Apriori algorithm to suit it for parallel 

computation platform. Using Amazon’s web services namely EC2, S3 and 

EMR for cloud computing, The proposed algorithm will reduce the execution 

time for lower values of support count, the authors didn’t mention or explain 

the algorithm also the result wasn’t clear .  

Dean and Ghemwat. [5] implement a MapReduce system  that runs on a  

large cluster  of commodity machines and is highly scalable. The author added 

some optimizations in the implemented system that aims to reduce the amount 

of data sent across the network. The system gives us a simple and powerful 

interface that enables automatic parallelization and distribution of large-scale 

computations, combined with an implementation of this interface that 

achieves high performance on large clusters of commodity PCs. 

HaLee and Choi. [20] aim to assist the database and open source 

communities in understanding various  technical aspects of  the MapReduce 

framework. They discuss MapReduce framework pros and cons. Also they 

introduce its optimization strategies and discuss challenges raised on parallel 

data analysis with MapReduce. They found that MapReduce is simple but 

provides good scalability and fault-tolerance for massive data processing.  
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Yang and Dasdan [21] aim to improve the MapReduce framework by 

adding a Merge phase, so that it is more efficient and easier to process data 

relationships among heterogeneous datasets. Also they extend the MapReduce 

framework to the Map-Reduce-Merge framework. It also adds a new Merge 

phase that can join reduced outputs.  They found that Map-Reduce-Merge 

model added to MapReduce’s many features. I also contains several 

configurable components that enable many data-processing patterns 

Agrawal and Srikant. [22] design and implement a MapReduce simulator 

to simulate the behavior of algorithms based on discrete event simulation 

which accurately simulate the hadoop environment. The simulation allows us 

to measure scalability of MapReduce application.  The evaluation results 

show high level of accuracy from different aspect.  

AbuTair and Baraka. [1]propose a parallel learning algorithm based on 

the KNN algorithm. They evaluated the parallel implementation on a 

multicomputer cluster that contains of 14 computers, using C++ programming 

language and the MPI library. They used OSAC Arabic corpus collected from 

multiple websites, the corpus includes 22,428 text documents with different 

categories (History, Sports, Health, Low, Stories, Economics, Education, 

Cooking Recipes). The corpus contains 18,183,511 words. 

AbuShab and Baraka. [23] propose a MapReduce-based classification 

approach for large scale Arabic text based on Naïve Bayes Algorithm that 

reduces time and achieves enhanced accuracy. Also the algorithm can process 

large amount of Arabic text efficiently and significantly improve the speedup, 

and the classification results show that the proposed parallel classifier has 

achieved accuracy, precision, and F-measure with around 97%. 
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From the previous work on MapReduce the results show that using 

MapReduce as a parallel programming model improve the performance of the 

algorithm. 

  Summary 

    In this chapter, we presented a review of existing works closely related to 

our research and identified some drawbacks of existing approaches. From the 

previous works there is a needed work to enhance the performance of Apriori 

by implementing it in parallel using MapReduce, but there is limited work in 

Arabic data.  

In the next chapter, we present the theoretical foundation underlying our 

research. 
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3 Chapter 3 Theoretical Foundation  

In this chapter, the fundamental concepts which represent the basis for 

understanding and conducting our research are presented. First, association 

rules mining are presented followed with Apriori algorithm and introducing 

related performance metrics. Then text preprocessing is explained since it is a 

prerequisite for any text mining task. Since we are using MapReduce model 

as the underlying computing model, it will be presented with its programming 

model and its realization Apache Hadoop and its related Hadoop Distributed 

File System (HDFS).  

 Association Rules Mining 

Association rule mining, one of the most important and well researched 

techniques. It aims to extract interesting correlations, frequent patterns, 

associations or casual structures among sets of items indata repositories. 

Association rules are widely used in various areas such as telecommunication 

networks, market and risk management, inventory control [24]. 

In a database of transactions D with a set of n binary attributes (items) I, a rule 

is defined as an implication of the form   

X ==>Y where X, Y   I and X ∩ Y = ∅. 

There are two important basic measures for association rules, support (s) and 

confidence (c). Since the database is large and users concern about only those 

frequently items, usually thresholds of support and confidence are pre-defined 

by users to drop rules that are not interesting or useful. The two thresholds are 

called minimum support and minimum confidence [24]. 
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Agrawal. [22] defined association rules as the implication rules that 

inform the user about items most likely to occur in some transactions of a 

database. They are advantageous to use because they are simple, intuitive and 

do not make assumptions of any models. Their mining requires satisfying a 

user-specified minimum support and a user-specified minimum confidence 

from a given database at the same time.  

Support (s) of an association rule is defined as the percentage of 

records that contain X ∪Y to the total number of records in the database. The 

count for each item is increased by one every time the item is encountered in 

different transaction T in database D during the scanning process. Support(s) 

is calculated by the following [24]. 

Support ( XY) = 
𝑆𝑢𝑝𝑝𝑜𝑟𝑡 𝑐𝑜𝑢𝑛𝑡 𝑜𝑓 𝑋𝑌

𝑇𝑜𝑡𝑎𝑙 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑡𝑟𝑎𝑛𝑠𝑎𝑐𝑡𝑖𝑜𝑛 𝑖𝑛 𝐷
 

Confidence (c) of an association rule is defined as the percentage of 

the number of transactions that contain  X ∪Y to the total number of records 

that contain X, where if the percentage exceeds the threshold of confidence 

an interesting association rule X ==>Y can be generated [24], Confidence is 

a measure of strength of the association rules. 

Confidence ( X|Y) = 
𝑆𝑢𝑝𝑝𝑜𝑟𝑡 ( 𝑋𝑌)

𝑆𝑢𝑝𝑝𝑜𝑟𝑡(𝑋)
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 Apriori Algorithm 

Apriori is an algorithm that has been proposed in [25]. The discovery of 

frequent itemsets is accomplished in several iterations. In each scan, a full 

scan of training data is required to count new candidate itemsets from frequent 

itemsets already found in the previous step. Apriori uses the Apriori property 

to improve the efficiency of the search process by reducing the size of the 

candidate itemsets list for each iteration. The Apriori property saysthat every 

sub (k-1)-itemsets of the frequent k-itemsets must be frequent. 

Figure  3.1  Pseudo Code for Apriori Algorithm [24] 

 

Input:  database D,    Mini Support   𝜖   ,    Mini Confidence   𝜀 

Output:  Rt All association rules  

Method: 

1- L1 = large 1-itemsets; 

2- for(k=2; Lk-1 ≠ ∅; k++) do begin 

3-  Ck =apriori-gen(Lk-1); //generate new candidates from Lk-1 

4-  for all transactions T  ∈ D do begin 

5-  Ct=subset(Ck,T); //candidates contained in T. 

6-  for all candidates C ∈ Ct do 

7-  Count(C)=Count(C)+1; // increase support count of C by 1 

8-  end 

9-  Lk={C ∈ Ct  | Count(C)  ≥  𝜖 × |D|} 

10-  end 

11- Lf = ∪k  Lk 

12 Rt=GenerateRules(Lf , 𝜀 )   
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The Apriori algorithm for finding frequent itemsets is shown in Figure 3.1, is 

used to produce Ck, and discarding all itemsets in Cn that do not pass the 

support threshold. Once these candidate itemsets are identified from Ck, then 

their supports are incremented. The rule generated that satisfy minimum 

confidence. 

3.2.1 Performance Metrics for the parallel Apriori 

In order to demonstrate the effectiveness of parallel processing for a 

problem on some platform, several concepts have been defined. These 

concepts will be used in later chapters to evaluate the effectiveness of parallel 

programs. These include speedup, scalability, and efficiency. They will be 

used in later to evaluate the effectiveness of our proposed parallel Apriori. 

Also the association rules generated must satisfy minimum support and 

confidence.  

 Speed up 

A Standard metric to measure the efficiency of a parallel algorithm is the 

speed up factor [26]. It’s defined as the ratio of the time required to solve a 

problem on a single processor to the time required to solve the same problem 

on a parallel computers [27], It’s defined as:  

Sn= ts / tp 

where ts is the execution time using only one processor and tp is the execution 

time using n processor.  
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 Arabic Text Preprocessing 

Arabic Language is a widely used language in the world Arabic 

Language it’s the 5th, It is spoken by more than 422 million people as a first 

language . Arabic language has three forms; Classical Arabic (CA), Modern 

Standard Arabic (MSA), and Dialectal Arabic (DA). Arabic alphabet consists 

of the following 28 letters (  ك ،ق ،ف ،غ ،ع ،ظ ،ط ،ض ،ص ،ش ،س ،ز ،ر ،ذ ،د ،خ،

ي ،و ،ه ،ن ،م ،ل ،ح ،ج ،ث ،ت ،ب ،أ  ) . The orientation of writing in Arabic is from 

right to left [28]. 

Some preprocessing in the corpus is performed. It includes tokenizing string 

to words, normalizing the tokenized words, applying stop word removal, 

applying the suitable term stemming. 

 

 String Tokenization  

String tokenization is the process of breaking a stream of text into words, 

phrases, symbols, or other meaningful elements called tokens. this tokens 

becomes input for further processing such text mining [29]. 

Text documents contains white spaces, punctuation marks, and a number of 

mark-ups that indicate font changes, and special characters. The aim of 

tokenization phase is to detect and isolate the individual words by eliminating 

these additional components. 

 Stopwords Removal  

Stopwords are terms or words that are too frequent in the text. These terms 

are insignificant. So, we can remove them to reduce the space of the items 

significantly.  
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 Stemming 

Word stemming is an important feature supported by present day indexing 

and search systems. Stemming algorithm is a computational process that 

gathers all words that share the same stem and has some semantic relation 

[30]. The main idea is to improve recall by automatic handling of word 

endings by reducing the words to their word roots, at the time of indexing and 

searching. Recall in increased without compromising on the precision of the 

documents fetched. Stemming is usually done by removing any attached 

suffixes and prefixes (affixes) from index terms before the actual assignment 

of the term to the Index.  

Stemming is needed in many application such information retrieval 

systems, natural language processing and compression of data [31].  

Many stemmers have been developed for English and other languages. 

Most of the major stemming techniques in Arabic are:  

1- The affix removal process is mainly achieved before the stemming 

process as one of the pre-processing steps. However, there are many 

conflicts in the literature if this process is necessary or not.  

2-  Surface-based stemmers that comprise from at least two morphemes as 

stated in [32]: 

3- Root-based stemmers: the main goal of this type of stemmers is to 

separate the root of a specific surface word. The prefixes and suffixes 

are removed and they are followed by the extraction of root. The 

residual stem is then compared with the similar patterns and length to 

extirpate the root. 
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4- Algorithmic Light Stemmers which eliminate a few number of suffixes 

and prefixes without dealing with recognize patterns or infixes, and find 

roots that listed in [32] and [33].   

5- Simple Stemmers are considered as types of Light stemmers using them 

the infixed vowels  ا , و, ء,ي are removed from variant  patterns as 

concluded in [33].  

 MapReduce Programing Model 

MapReduce is one of the earliest and best known models in parallel and 

distributed computing area, created by Google in 2004, based on C++ 

language. It is a programming model and associated implementation for 

processing and generating large data sets in a massively parallel and 

distributed manner [9]. It is composed of two functions to specify, “Map” and 

“Reduce”. They are both defined to process data structured in (key, value) 

pairs. The advantages of MapReduce is simple and easy to use, it’s doesn’t 

have any dependency on data model and schema, high scalability, highly 

fault-tolerant because each node in the cluster is expected to report back 

periodically with completed work and status updates [20].  

 MapReduce Architecture 

The MapReduce is consists of two primitive functions: Map and Reduce. 

The input for MapReduce is a list of (key1, value1) pairs and Map() is applied 

to each pair to compute intermediate key-value pairs, (key2, value2). The 

intermediate key-value pairs are then grouped together on the key equality 

basis [34]. 
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The Map invocations are distributed across multiple machines by 

automatically partitioning the input data into a set of M splits. The input 

processed in parallel by different machines. Reduce invocations are 

distributed by partitioning the intermediate key into R pieces using a 

partitioning function. The number of partitions and the partitioning function 

are specified by the user. Figure 1 shows the overall flow of a MapReduce 

operation. When the user calls the MapReduce function the following actions 

occurred in sequence:  

1- The MapReduce library splite the input files into N pieces with size 

between 16 MB to 64 MB. 

2-  It starts up many copies of the program on a cluster of machines. One 

is the master and the others is workers, master assigns map and reduce 

tasks to the workers. 

3- A worker with a map task read the contents of it’s input and pass it to 

the Map function as key/value pairs. The output of the Map function is 

buffered to a memory. 

4- Periodically, the buffered pairs are written to local disk, partitioned into 

R regions by the partitioning function. Then the locations of these 

buffered pairs on the local disk are passed back to the master to forward 

these locations to the reduce workers. 
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5- When a reduce worker is notified about these locations, it uses remote 

procedure calls to read the buffered data from the local disks of the map 

workers. 

 

6- When a reduce worker read all intermediate data, it sorts it by the 

intermediate keys so that all occurrences of the same key are grouped 

together. 

7- The reduce worker iterates over the sorted intermediate data and for 

each unique intermediate key encountered, it passes the key and the 

corresponding set of intermediate values to the user's Reduce function. 

The output of the Reduce function is appended to a final output file for 

this reduce partition. 

8- Finally when all map tasks and reduce tasks have been finished their 

job, the master wakes up the user program to return the result 

Figure 3.2 MapReduce Execution overview [5] 
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 Fault Tolerance 

Since the MapReduce library is designed to help process very large 

amounts of data using hundreds or thousands of machines, the library must 

tolerate machine failures gracefully. When running jobs on a large cluster 

where individual nodes or network components may experience high rates of 

failure, MapRecuce can guide jobs toward a successful completion. 

 Worker Failure 

The master pings every worker periodically. If there is no response 

received from a worker in a certain amount of time, the master marks the 

worker as failed. Any map tasks completed by the worker are reset back to 

their initial idle state, and therefore become available for scheduling on other 

workers. Although, any map task or reduce task in progress on a failed worker 

is also reset to idle and becomes available for rescheduling. 

Completed map tasks are re-executed on a failure because their output is 

stored on the local disk of the failed machine and the output is not accessible. 

Completed reduce tasks do not need to be re-executed because their output is 

stored in a global file system. 

 Master Failure 

The master write periodic checkpoints of the master data structures. If the 

master task dies, a new copy can be started from the last check pointed state. 

However, given that there is only a single master, its failure is unlikely; the 

program aborts the MapReduce computation if the master fails. 
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 Hadoop as MapReduce Realization 

Apache Hadoop [6] is an infrastructure for distributed computing which 

allow us to write and run distributed processing of large-scale data sets on 

high performance cluster. Distributed computing is wide and varied field, but 

the key distinctions of Hadoop are [35]:  

 Accessible: Hadoop runs on large clusters of commodity machines or 

on cloud computing services such as Amazon’s Elastic Compute Cloud 

(EC2). 

 Robust: Because it is intended to run on commodity hardware, Hadoop 

is architected with the assumption of frequent hardware malfunctions. 

It can gracefully handle most such failures. 

 Scalable: Hadoop scales linearly to handle larger data by adding more 

nodes to the cluster. 

 Simple: Hadoop allows users to quickly write efficient parallel code. 

Hadoop’s accessibility and simplicity give it an edge over writing and 

running large distributed programs. Even college students can quickly and 

cheaply create their own Hadoop cluster [36] . On the other hand, its 

robustness and scalability make it suitable for even the most demanding jobs 

at Yahoo and Facebook. 

The cluster run jobs controlled by the master node, which is known as the 

NameNode and it’s responsible for chunking the data, cloning it, sending the 

data to the other slave nodes (DataNode), monitoring the status of the cluster, 

and collecting the results [37].  
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 Component of a Hadoop Cluster 

Hadoop follows a Master-Slave architecture. As mentioned earlier. In 

Figure 3.3 the components of a Hadoop cluster ( NameNode, Secondary 

NameNode and the JobTracker) are running on a single machine. Usually in 

production clusters having more that 20-30 nodes, the daemons run on 

separate nodes. a file in HDFS is split into blocks and replicated 

across Datanodes in a Hadoop cluster [38]. You can see that the three files A, 

B and C have been split across with a replication factor of 3 across the 

different Datanodes. The nodes in the figure are: 

 

Figure 3.3: The Component of the Hadoop Cluster [35] 
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 NameNode 

The NameNode in Hadoop is the node where Hadoop stores all the location 

information of the files in HDFS. In other words, it holds the metadata for 

HDFS. Whenever a file is placed in the cluster a corresponding entry of it’s 

location is maintained by the NameNode.  

 Secondary NameNode 

The Secondary NameNode is not a failover node for the NameNode.The 

secondary name node is responsible for performing periodic housekeeping 

functions for the NameNode. It only creates checkpoints of the file system 

present in the NameNode. 

 DataNode 

The DataNode is responsible for storing the files in HDFS. It manages the 

file blocks within the node. It sends information to the NameNode about the 

files and blocks stored in that node and responds to the NameNode for all file 

system operations. 

 JobTracker 

JobTracker is responsible for taking in requests from a client and assigning 

TaskTrackers with tasks to be performed. The JobTracker tries to assign tasks 

to the TaskTracker on the DataNode where the data is locally present (Data 

Locality). If that is not possible it will at least try to assign tasks 

to TaskTrackers within the same rack. If for some reason the node fails 

the JobTracker assigns the task to another TaskTracker where the replica of 
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the data exists since the data blocks are replicated across the DataNodes. This 

ensures that the job does not fail even if a node fails within the cluster. 

 TaskTracker 

TaskTracker is a daemon that accepts tasks (Map,Reduce and Shuffle) 

from the JobTracker. The TaskTracker keeps sending a heart beat message to 

the JobTracker to notify that it is alive. Along with the heartbeat it also sends 

the free slots available within it to process tasks. TaskTracker starts and 

monitors the Map & Reduce Tasks and sends progress/status information back 

to the JobTracker. 

 Hadoop Distributed File System (HDFS) 

Hadoop Distributed File System (HDFS) [39][36,7] is a distributed file 

system designed for storing and supporting very large files, it provides global 

access to files in the cluster. For maximum portability, HDFS is implemented 

as a user-level files system in Java which exploits the native file system on 

each node. Files in HDFS are divided into large blocks, typically 64MB, and 

each block is stored as a separate file in the local file system. HDFS is 

implemented by two services: the NameNode and DataNode. The NameNode 

responsible for maintaining the HDFS directory tree, and is a centralized 

service in the cluster operating on a single node. Clients contact the 

NameNode in order to perform common file system operations, such as open, 

close, rename, and delete. The NameNode does not store HDFS data itself, 

but rather maintains a mapping between HDFS file name, a list of blocks in 

the file, and the DataNodes on which those blocks are stored. 
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In addition to a centralized NameNode, all remaining cluster nodes provide 

the DataNode service. Each DataNode stores HDFS blocks on behalf of local 

or remote clients. Each block is saved as a separate file in the node’s local file 

system. Because the DataNode abstracts away details of the local storage 

arrangement, all nodes do not have to use the same local file 

 

 

 

 

 

 

 

 

Figure 3.4:  Hadoop Distributed File System Architecture [37] 

system. Blocks are created or destroyed on DataNodes at the request of the 

NameNode, which validates and processes requests from clients. Although 

the NameNode manages the namespace, clients communicate directly with 

DataNodes in order to read or write data at the HDFS block level. Hadoop 

MapReduce applications use storage in a manner that is different from 

general-purpose computing. First, the data files accessed are large, typically 

tens to hundreds of gigabytes in size. Second, these files are manipulated via 

streaming access patterns typical of batch-processing workloads. When 
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reading files, large data segments (several hundred kilobytes or more) are 

retrieved per operation, with successive requests from the same client iterating 

through a file region sequentially. Similarly, files are also written in a 

sequential manner. 

This emphasis on streaming workloads is evident in the design of 

HDFS. First, a simple coherence model (write-once read-many) is used that 

does not allow data to be modified once written. This is well suited to the 

streaming access pattern of target applications, and improves cluster scaling 

by simplifying synchronization requirements. Second, each file in HDFS is 

divided into large blocks for storage and access, typically 64MB in size. 

Portions   of the file can be stored on different cluster nodes, balancing storage 

resources and demand.  

Manipulating data at this granularity is efficient because streaming-style 

applications are   likely to read or write the entire block before moving on to 

the next. In addition, this design choice improves performance by decreasing 

the amount of metadata that must be tracked in the file system, and allows 

access latency to be amortized over a large volume of data. 

 Summary 

   In this chapter, we presented an overview of the basic theoretical foundation 

that related to our research. We presented Apriori algorithm, we described 

performance metrics that used to evaluate the effectiveness of a parallel 

Apriori algorithm, MapReduce, Hadoop platform, Hadooop Distributed File 

System. In the next chapter, we provide a detailed description of the proposed 

parallel Apriori approach. 
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4 Chapter 4  The Proposed Parallel 
Apriori Approach 

In this chapter we present the proposed parallel Apriori algorithm 

approach. We describe all steps of the proposed parallel Apriori using the 

psydocode and diagrams. We use MapReduce model to solve the problem of 

processing a large scale Arabic text. First, we present the steps of collecting 

Arabic text documents and applying text documents and applying text 

preprocessing. Second, we describe the steps of splitting and distributing the 

documents of the collected corpus as MapReduce tasks. Finally, we present 

the Apriori algorithm using MapReduce model. 

 The Overall Apriori Approach 

Figure 4.1 shows the workflow of the parallel Apriori approach: the approach 

consists of the following phases 

1- Corpus collection and cleaning: The corpus is collected and divided 

into text documents, then text preprocessing is applied to remove non-

Arabic text, perform tokenization, remove Arabic stop word and 

perform light stemming. 

2- Text preprocessing: some preprocessing in Arabic corpus is 

performed. First we applying stop words removal, tokenizing string to 

words and applying suitable term stemming. It is worth mentioning that 

the processing time is not considered as part of the performance 

evaluation since it is performed only once for the corpus used 

repetitively in the experiments. 
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3- HDFS configuration, splitting and data uploading: it’s important to 

split the problem into sub-problem that can be executed in parallel and 

identify the data on which the computational performed, and then 

partitioning this data across various tasks. 

The task performs the computations on its own data. In our algorithm 

the input data (corpus) are preprocessed and transferred in to sequence 

of files and then we upload it to the HDFS. The HDFS splits the corpus 

in to 16 MB to 64 MB chunks each presented as map task and distribute 

them among the workers. The data replication is 3 times (by default). 

In addition to that there are other configuration parameter such as: 

document number, classes number and the documents number in each 

class of corpus. 

Next, steps, 4, 5 and 6 represent the core of the approach in terms of the 

Apriori algorithm. 

4- Generate frequent itemsets and their occurrence in each split: in 

this step the frequent itemsets are generated for each split resulted from 

the previous step and the MapReduce model outputs the itemsets along 

their occurrences in the split using one map, one reduce function. This 

is explained in detail in Section 4.3.2. 

5- Generate frequent itemsets and their occurrence in all splits: based 

on the generated itemset from the previous step, the candidate itemsets 

and its occurrence in the whole splits as part of Apriori algorithm are 

generated using one map and one reduce function. This step is detailed 

in Section 4.3.3. 

6- Generate strong association rules: after generating the frequent 

itemsets for all the data, we generate the association rules using one 
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map and one reduce function with predefined minimum confidence to 

generate strong rules. This step is detailed in Section 4.3.4. 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.1  Workflow of the Proposed Approach 

The above steps explains briefly the Apriori approach, next (in Section 4.2 

and Section 4.3) we present each of these steps in details and how Apriori 

algorithm is used as a set of MapReduce functions. 
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 Corpus Collection  

Collecting the Arabic data is one of the most difficulties in this work 

because we want to  find a large and free Arabic corpus for evaluating the 

parallel Apriori algorithm. 

We have different datasets available for Apriori algorithm in English 

language while the Arabic data is fewer. The most popular Arabic text corpus 

used in text mining cannot satisfy our experiments data size for large-scale 

Arabic text corpus. So we choose to collect the real data Arabic text corpus 

from Shamela library [40] it contains large collection of data in different 

Arabic fields. 

We collect the documents from Shamela library this documents needs to 

be processed, First compiling and labeling text documents into corpus then 

converting document files into text format with UTF-8 Encoding using a word 

to text converter ( Zilla ). 

The Shamela corpus is categorized into eight subjects, Creed, History, 

Trajem, Usual, Tafsir, Sirah, Al-Hadith and Fiqh. The corpus contains 

101,647 text documents with size of 5,310 MB. 

Next, text preprocessing and the MapReduce parallel Apriori algorithm is 

described in more details.   
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  The parallel Apriori Algorithm as a MapReduce 

Model  

Building the parallel Apriori is the core of our approach .It includes four main 

phases: text preprocessing phase, generating frequent itemset for each split, 

generating frequent itemset for each split for all splits, and generate 

association rules phase. These phases are shown in Figure 4.2  

As a MapReduce processing model, in the first phase two steps are conducted 

(i) the data divided in to ( m ) files (ii) the text preprocessing is performed 

using MapReduce computations.Each map function takes one split as input, 

we have also a mapper and reducer functions. 

Figure 4.2 proposed parallel Apriori approach 
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The output of this phase is a frequent k-itemsets and their occurrence for each 

split as a list of intermediate key/values. 

The second phase has a MapReduce computation for generating candidate 

frequent itemsets for all the data, the input of this process is an input split and 

a file contained all partial frequent k-itemsets that resulted from the first phase 

and the output is the frequent k-itemsets and its occurrence in the whole input 

data. And then used the frequent itemsets to generate the association rules. 

Next we present in details these two phases and their relationships based on 

the proposed approach as shown in figure 5.2. 

4.3.1 Text Preprocessing Phase 

    Applying the Apriori Approach requires usually a preprocessing stage that  

would remove  punctuation marks, and might returning the words to their stem 

or roots. Figure 4.3 shows these steps in details, they include removing non-

Arabic text, tokenizing string to words, stop words removal, term stemming. 

These steps are details as follows: 

 All the non-Arabic texts such as the digits and punctuation marks, non-

Arabic letters. 

Figure 4.3: Text Preprocessing Details 
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 Tokenization consists of separating strings by word boundaries, we 

used white space tokenization because the space is the only way to 

separate words in Arabic language. 

 Arabic stop word removal that delete tokens which is not content-

bearing. 

 Stemming to remove all possible affixes and reduce the word to its stem 

The text preprocessing algorithm is based on [40], we covert it to parallel 

using MapReduce programming model as shown in (Algorithm 4.1)  map 

phase  and (Algorithm 4.2) the reduce phase. 

Algorithm  4.1: The Map Phase of Text Preprocessing 

Input:  

Key: docnam,      // one text document for each map 

Value: content,      //content of the document 

Output:  

key: docname, 

Value: tokenized  content,     // content of the document after applying tokenization  

For each line ∈   Document 

Token=Tokenize (line);               // tokenizing string to word 

If (Token.hasMoreTokens) 

docTok           docTok  ∪ Token; 

end if 

end for 

 

 The map phase (Algorithm 4.1) of the preprocessing algorithm takes the 

document as input each  map function takes one document as input, this 

function tokenized the string to words, The aim of the tokenization phase is to 

detect and isolate the individual words by eliminating additional components. 
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For the purposes of this work, it is assumed that an Arabic word is a sequence 

of Arabic letters and diacritical marks without separators (space or 

punctuation marks). 

Algorithm  4.2: The Reduce Phase of Text Preprocessing 

Input:  

Key: docname,      // one text document for each reduce 

Value: content,    // content of the document 

Output:  

key: docname, 

Value : conent,  //content of the document after preprocessing 

For each line ∈   Document 

   Remove non-Arabic character; 

For each word  ∈   line  do 

If (word  ∈   stopword.txt)  

   Remove word; 

end loop 

   Remove prefixes; 

   Remove suffixes; 

If (word  ∈   similes.txt) then 

    Substitute similar for word;     

end loop 

end loop 

 

The reduce phase (Algorithm 4.2) takes the document from the map 

function and perform text preprocessing it includes: 
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 Cleaning process: to draw the list of stop words- the set of words those 

are deemed “irrelevant"- such as  الذي , لذلك, مع  and to remove all non-

Arabic elements.  

 stemming is used for reducing inflected (or sometimes derived) words 

to their stem, base or root form. 

4.3.2  Phase One: Generate Frequent Itemsets for Each Split  

    In this phase the data  is divided into logical Input Splits, each of which is  

      Algorithm  4.3 The Mapper of Phase 1 

Input: split of the data Si,min-sup 

Output: ( key, value ), 

key: element of frequent k-itemset, 

value: the occurrence of the element,  

Map(object , Si )   // Map function 

L1=find-frequent-1-itemsets(Si) 

For(k=2; Lk-1≠  ∅,;k ++) 

Generate new candidate Ck; 

For each candidate c ∈Ck 

c.count++; 

end for 

L={ c∈Ck  | c.count ≥ 𝑚𝑖𝑛 − 𝑠𝑢𝑝} 

if itemset 𝐼 ∈  L 

output (I , pcount); 

end map 

end 

 then assigned to a Map task then the map worker calls the map function to 

process the input split. 



www.manaraa.com

41 

 

The Map function (Algorithm 4.3)  reads one split at a time and output a list 

of intermediate(key , values) pairs where key is the element of the frequent 

itemset and the value is its occurrence. The data from the mapper is written in 

the temporary files in HDFS to be used by combiner. 

The reducer (Algorithm 4.4) takes the inputs from the mapper and sum up the 

values associated with the same key, and writes the value in the output file in 

the increasing order of the keys. The output  is a list L of (key, value) pairs 

where key is an element of frequent itemsets and the value equal one, this list 

Li is stored in a temporary file in HDFS. 

       Algorithm  4.4: The Reducer of Phase 1 

Input: ( key1, value1 ), 

Key1: element of frequent k-itemset, 

Value1: the occurrence in each split, 

Output: ( key2, 1), 

Key2: element of candidate frequent k-itemsets, 

Reduce( key1, value1 )    // Reduce function 

Out(key2, 1);    // collected in L1 

End reduce 

End  

 

4.3.3  Phase Two: Generate Frequent Itemsets for all Splits 

    In the later iteration of Map/Reduce (phase two) the Map function 

(Algorithm 4.5) takes in an input split and a file that contains the list of all 

frequent itemset (Li), This map function counts the occurrence of each 

element of the frequent k-itemset in the split and outputs a list of (key , value) 
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pairs, where key is an element of frequent k-itemset and the value is the total 

occurrence in the split.  

       Algorithm  4.5: The Mapper of Phase 2 

Input: split of the data Si, Li (temporal file in HDFS), 

Output: ( key, value ), 

Key : element of the list Li, 

Value : the occurrence in the split, 

for each itemset I  in Li 

Map(object , Si )   // Map function 

count = count the occurrence of I in Si, 

output (I , count); 

end Map 

 end for 

end 

 
       Algorithm  4.6: The Reducer of Phase 2 

Input: ( key1, value1 ), 

Key1: element of the candidate k-itemset, 

Value1: the occurrence in each split, 

Output: ( key2, value2 ), 

Key2: element of frequent k-itemset, 

Value2: the occurrence in the whole data, 

Reduce( key1, value1 )    // Reduce function 

If ( value2.hasNext()) 

Sum+=value2.getNext(); 

End if 

If (sum>=min-sup-count) 

Out(key2, sum);    // stored in Lg (HDFS) 

End if 

End reduce  End 
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The reducer (Algorithm 4.6) takes the inputs from the mapper as (key1, 

value1)  where key is an element of the candidate k-itemset and the value is 

its occurrence in each split. The output is a list L of (key, value) pairs where 

key is an element of frequent k-itemsets and the value its occurrence in the 

whole data. 

4.3.4 Phase Three: Generate Association Rules 

In this phase we generate the strong association rules using one map and one 

reduce function (Algorithm 4.7) , the map function takes the list of frequent 

itemsets and their support and takes the frequent itemset that survived  the  

support  threshold  and group the entries of the same key.   

      Algorithm  4.7 : Map and Reduce for Generate Association Rules 

Input: a list of all frequent itemset Lg,  support suppi,   

Output: R set of strong associated rules  

Map Function(Lg , suppi)  

for each frequent item Fi in Lg of suppi 

group entries of the same key   

End if 

  End for 

Reduce Function():  

for every entry i which:  

  calculate confidence conf = sup_i/ sup ; 

  if conf  >= confidence threshold  

  R = R union (key --> conf); 

End for 

End  
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The reduce function calculate the confidence of each itemset and output the 

itemsets which satisfy the confidence threshold and the output will be the rule 

with the confidence. 

 Summary 

In this chapter, we presented the proposed parallel Apriori approach 

based on MapReduce model. First we prepossess the Arabic Textual data 

through a MapReduce algorithm, then we used three algorithm to generate 

frequent itemsets for each split of the data. One for finding the frequent 

itemset in the input split, also we have the combiner to combine the data and 

the reducer to generate the frequent item set. Also we have two parallel 

MapReduce algorithms, one for calculate the occurrence of the frequent 

itemset in the split, and the other to generate the frequent itemset and their 

occurrence in the whole data. Finally we have a MapReduce algorithm to 

generate a strong association rules.  
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5 Chapter 5 Experimental Results and 

Evaluation 

In this chapter we present and analyze the experimental results to show 

that our parallel Apriori algorithm can enhance execution time, speedup, and 

generate strong association rules in terms of support and the confidence for 

the association rules. The chapter includes three sections: Section 5.1 presents 

the corpus used in our experimentation and gives insight into the main 

characteristics of it. Section 5.2 describes the experimental environment and 

the implementation of the parallel Apriori. Finally, Section 5.3 presents and 

discusses the experimental results. 

 The Corpus 

We used Shamela corpus which is the largest freely public Arabic corpus 

of text documents to perform our experimentations.  

The Shamela Arabic corpus collected from multiple websites as presented in 

Table 5.1, the corpus includes 101,647 text documents. Each text document 

belongs to 1 of 8 categories (Creed, Usual, Fiqh, Hadith, History, Seerah, 

Tafsir, and trajem). 

We perform all text preprocessing (Section 3.3) on the corpus. This includes 

non-Arabic text removal, Arabic stop word removal, stemming, and indexing. 
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Table 5.1 : The Shamel Corpus 

 

 Experimental Setup 

This section describes the experimental environment for testing our 

proposed approach. We implemente parallel Apriori algorithm using Java 

programming language. The experimental environment is built on a 

MapReduce cluster with 16 machines. One of these nodes is configured as 

Hadoop Master or as the NameNode which controls the data distribution over 

the Hadoop cluster and the other 15 machines acting as DataNodes. All the 

nodes are identical in terms of the system configuration i.e., all the nodes have 

identical processor - Intel Core i5 CPU with 3.20 GHz, 4.00 GB RAM, 500 

GB hard disk drive and the operating system is Ubuntu 12.4 Linux with Java 

JDK 1.8.0, and Hadoop version 1.2.0. The computers connected through a 

local area network with speed of 10/100 Mbps. 

Category 
Number of Text 

Document 

Size of Text 

Document(MB) 

Hadith 23,530 1200 

Trajim 14,722 784 

Creed 6,776 373 

Usual 2,245 128 

History 9,232 488 

Tafsir 18.048 973 

Seerah 4,641 240 

Fiqh 22,405 1180 

Total 101,647 5310 MB 
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HDFS splits corpus into 16 MB to 64 MB chunks each presented as a map 

task and then distribute them among workers with 3 replications by default, 

the input split includes location information for the next block and the byte 

offset of the data needed to complete the record. HDFS stores replicas of each 

data block to ensure both reliability, availability, and performance. 

  Implementing the Parallel Apriori over Hadoop 

The proposed parallel Apriori is implemented over Hadoop distributed 

data processing platform as a MapReduce model that reflects the phases of 

the approach: text preprocessing (Section 4.3.1),  generating frequent itemsets 

for each split (Section 4.3.2),  generating frequent itemsets for all 

splits(Section 4.3.3), and generating association rules (Section 4.3.4). The 

overall results of the implementation is to increase the performance of the 

apriori in terms of execution time and hence speedup while generating strong 

association rules in terms of the confidence measure. 

We follow steps in [35] for building the Hadoop cluster with Hadoop 

version 1.2.0. The implementation of the parallel Apriori approach using 

Hadoop involves the following steps: 

 Step 1: All text preprocessing is performed on Shamela corpus also 

using MapReduce algorithm (see Section 4.3.1). It is saved as text files 

directories into NameNode then uploaded to HDFS which divides the 

input text files into data blocks of size 64 MB. The HDFS stores the 

metadata of each block in the NameNode and all the data blocks in the 

DataNode. 
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 Step 2: Running the Apriori algorithm over hadoop to generate the 

frequent itemsets. Figure 5.1 show the execution time of the parallel 

Apriori. The output of the Apriori is stored in file on HDFS.  

 Finally, Generate the association rules using one map and reduce 

function. We considered the strong rules that satisfy the minimum 

support and confidence which we considered see (Table 5.4). 

 

Figure 5.1: The Result of Running Parallel Apriori 

 

   Experimental Results and Evaluation 

This section summarizes and discusses the results of the experiments that 

are conducted. 

We use the collected corpus of 101,647 documents that are represented 

as records and 4046 words that represented attributes. We evaluate the 

performance of the parallel Apriori with respect to the execution time and 

speed up (as described in section 3.6.1).  
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5.4.1 Execution Time 

To measure the execution time, we have executed the parallel Apriori 

algorithm with Support 35 on a system of clusters which varies from 2 to 16. 

We also have used different number of testing documents to observe the 

effects of different problem (documents) size on the performance. Three sets 

where used with the number of tested documents 5830, 10508, 20302 

documents. Figure 5.1 shows a snapshot of the Hadoop run in one of the 

experiments, it shows total execution time of the parallel Apriori including 

the time of each phase except the text preprocessing. As we mentioned before 

text preprocessing is not part of Apriori algorithm where it is performed only 

once for all set of runs. The execution time here is equal to 2.8 minutes. More 

specific execution time values for various runs are shown in Table 5.2. 

 

Table 5.2: The Execution Times (sec.) of One Node and Multiple Node 

Problems size 

  No. of Nodes 

5830 

Documents 

10508 

Documents 

20302 

Documents 

Standalone 
1-Node 234.61 293.72 621.32 

 

 

Parallel 

Apriori 

2-Node 127.96 140.54 219.53 

4-Node 131.96 130.07 194.99 

8-Node 42.30 51.90 91.29 

12-Node 40.25 49.57 72.97 

16-Node 32.17 40.14 53.69 
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Table 5.2 shows the execution time of one node with MapReduce takes more 

time than the parallel version. In the parallel Apriori the execution time 

decreases when the number of processors increases. However, the parallel 

implementation achieves a good execution time compared to the standalone 

one. Also the execution time increases when the number of documents 

increases. Figure 5.1 shows the curves of the execution time based on   Table 

5.2.  

The sequential Apriori algorithm is not appropriate for experiment, because 

of the large scale of documents. 

 

Figure 5.2 : Execution Time 
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5.4.2 Speedup 

To compute the speedup we using the formula: 

Sn=ts / tp 

where ts is the execution time using only one node and tp is the execution time 

using n node which is gained from this parallelization as described in section 

. The speedup is recorded in Table 5.3 and is illustrated in Figure 5.2 

The parallel algorithm demonstrates linear speed up. When running an 

algorithm with linear speedup, doubling the number of nodes doubles the 

speedup. It is difficult to achieve linear speed up due to the communication 

costs which increases as the number of document increases. 

The time that the parallel Apriori spends does not appear to have a linear 

relationship with nodes, this is due to the fact that when running Hadoop jobs, 

starting a cluster for the first time takes some time. Also the execution time of 

parallel Apriori on nodes have a few changes. 

Table 5.3 : The Relative Speedup of the Proposed Parallel Aprioi 

          Problems size 

   No. of Nodes 

5830 

Documents 

10508 

Documents 

20302 

Documents 

2-Node 1.83 2.09 2.37 

4-Node 1.78 2.26 2.67 

8-Node 5.55 5.66 5.71 

12-Node 5.83 5.93 7.14 

16-Node 7.29 7.32 9.71 
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The results show that the Apriori algorithm have high speedup. Specifically, 

as the size of records increase the speedup improves. Therefore, the parallel 

Apriori can treat large scale Arabic text document efficiently.    

The speedup improves in some cases, on the largest tested set (20302 

documents ), the parallel Apriori achieves relative speedups of  2.37, 2.67, 

5.71, 7.14 and 9.71 on 2, 4, 8, 12 and 16 nodes respectively. When the size of 

the tested document is small the speedup drop from linear to sub-linear. The 

smallest tested documents sizes give similar results. 

If we increase the number of nodes the speedup gains tend to drop. Figure 5.2 

shows the speedups for the different document sets. When we used 4 nodes 

the speedup improve from 1.83 to 2.37, on 8 nodes it improves from 1.78 to 

2.67, and on 16 nodes it improves from 7.29 to 9.71. It can be shown that our 

parallel Apriori algorithm gives better performance with larger volume Arabic 

text documents than with smaller volume Arabic text documents. 
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Figure 5.3 The Relative Speedup of the Proposed Parallel Apriori 

 

5.4.3 Support and Confidence 

Support is an important measure (Section 3.1) because a rule that has very low 

support may occur simply by chance. The smaller the minimum support 

threshold is, the more frequent itemsets there will be, so the execution time 

will increase along with the decrease of the minimum support threshold. The 

number of frequent items increases quickly along with decrease of minimum 

support threshold. Table 5.4 shows the execution time for different 

support values. 
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Table 5.4 Minimum Support Threshold with  Execution Time   

Support Time (sec) 

25 281.23 

30 210.02 

35 109.2 

40 99.2 

45 87.02 

 

The confidence is used to measure the strength of the rules. Table 5.5 shows 

the association rules generated with different support and confidence, the 

number of rules decreases as the support increase. A low support rule is also 

likely to be uninteresting. For these reasons, support is often used to eliminate 

uninteresting rules. In Table 5.5, the rules with the minimum confidence 

specified is considered strong rules. 

So we considered the value of support 35 to generate the frequent itemsets 

which lead to decrease the execution time if we use lower support 1 the 

execution time will increase and the frequent itemsets also increase, the 

number of rules also increase  and some rules maybe occurred by a chance.        

We considered the minimum confidence which used to determine the strength 

of the rule be 60% this leads to generate a good number of rules that that are 

considered meaningful and strong. For example as shown in the table, when 

the support is 35 and confidence is 60%, the number of generated association 

rules that are considered meaningful and strong is 641.  
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Table 5.5 : The number of Rules Generated for Different Support and Confidence 

 

Table 5.6 show an example of some rules resulted from the experiments on 

hadith data. We have rules say: )افضل العمل( is (ايمان) and (الحج), this is true, we 

have a hadith for )افضل الاعمال(.  

Also we have rules say: (اشراط الساعة) is )الجهل( and )الخمر(, this is true, we have 

a hadith for ()اشراط الساعة .  

Another rules say (كل مسكر) is )حرام( this is true, we have a hadith for )المسكرات(.  

                                             Table 5.6: Example of the Rules 

 

 

 

 

 

 

 

 

 

Support 25  35 45  

Confidence 50 % 60 % 70% 50 % 60 % 70 % 50 % 60 % 70% 

 

Number of rules 

 

568 452 322 690 641 388 755 599 512 

 ايمان        افضل عمل

 اسلام        احسان  ايمان

 الحج        عملافضل 

 الخمر        اشراط الساعة

         الحياء         ايمانمن 

 الجهل        اشراط الساعة

 مسكر        حرام كل 

 جوف ليل         صلاة

 حسن الخلق        البر

 تقوى الله         امر
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 Summary 

This chapter presented and analyzed the experimental results. It 

presented the corpus characteristics, explained the experimental environment, 

and the implementation of the parallel Apriori algorithm using MapReduce 

model. Also, it presented the experimental results of the parallel Apriori and 

its performance. Finally The evaluation of the quality of the parallel Apriori 

model during sets of experiments. 

Overall, results indicated that the parallel Apriori algorithm improved 

the performance of the Apriori and this improvement became much more 

obvious when the data is very large. The improvement in the execution time 

and speedup. 

 

    

 

 

 

 

 

 صيام         جنة

 حج مبرور         جنة

 رمضان      صيام قيام   
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6 Chapter 6 Conclusion and Future Work  

Mining association rules from large Arabic text documents is an important 

research in text mining. Apriori algorithm is of low efficiency when used with 

large amount of computational power for generating frequent itemsets. Such 

a drawback makes it unsuitable to handle a large volume of text documents 

with high performance and in particular in the Arabic language. 

We proposed a parallel Apriori approach for large-scale Arabic text 

document based on MapReduce. It involves Arabic text documents collection, 

Arabic text processing, design the suitable MapReduce computing model for 

parallel Apriori over Hadoop platform, implementation of the parallel 

algorithm using java programming. 

We tested our approach using large scale Shamela-sourced corpus which 

is the largest Arabic corpus of text documents. The test is performed on 

Hadoop cluster consisting of 16 nodes as a MapReduce model. The 

experimental results on the performance indicate that the parallel Apriori 

algorithm design has very good speedup characteristics when the problem 

sizes are scaled up. 

The proposed approach can be used efficiently to generate frequent 

itemsets from large scale Arabic text with high performance in terms of 

execution time and speedup while generating strong association. Hence our 

approach overcome the problem of low efficiency of the sequential Apriori 

algorithm while maintaining the level of association rules generation. 

There are several directions for improvement and future investigation. Our 

work can be extended to cover larger computer clusters and Arabic text 
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documents that will be more than one tera bytes. Additionally, we can apply 

this parallel Apriori to various application domains such as weather data, 

internet traffic, log files, medical information, among others to check its 

generalization. We will also extend our work to cover a popular distributed 

programming paradigms like MapReduce in a cloud environment. Further 

algorithms can be applied to interesting applications.  Finally the work can be 

applied with other cloud-based technologies, where algorithms can be used 

with big data techniques over MapReduce model to speed up the process and 

give accurate results. Also for future work the Apriori suffers from the number 

of scanning for the data in order to generate frequent itemsets we can take this 

drawback for future. 
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